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Abstract. Within the framework of non-equilibrium thermo field dynamics (NETFD), quantum
Wiener processes at finite temperatures are constructed, and its representation space is shown
to be the thermal space. After the introduction of the stochastic Shrödinger equation, a unified
system of quantum stochastic differential equations, including the quantum stochastic Liouville
equation and the quantum Langevin equation, is established within the quantum stochastic
calculus.

1. Introduction

Studies of the Langevin equation for quantum systems were started by Senitzky [1], Lax
[2] and Haken [3]. They investigated the Langevin equation for a quantum mechanical
damped harmonic oscillator. In the quantum Langevin equation, variables in both relevant
and irrelevant systems are stochastic operators. Putting the condition that the equal-time
canonical commutation relation should hold for all time even for stochastic operators, they
derived commutation relations among random force operators and their correlations.

In their studies, Senitzky, Lax and Haken did not construct a representation space
explicitly. In quantum theory, observable operators do not have physical meaning until a
representation space is specified. As was pointed out by Kubo [4], the quantum Langevin
equation is an operator equation defined on a total representation space, i.e. a space of a
relevant system and of random forces. Any representation space of random force operators
had not been constructed by physicists.

Mathematicians such as Hudson, Parthasarathy and their co-workers [5–10] constructed
explicitly a representation space of random force operators. With the representation
space, they realized a stochastic Schrödinger equation by analogy with the usual quantum
mechanics. A time-evolution generator satisfying the stochastic Schrödinger equation was
determined on the requirement of its unitarity, which is one of the necessary conditions
for construction of a canonical operator formalism. It seems that, for mathematicians, a
construction of the stochastic Liouville equation was out of their considerations.

The stochastic Liouville equation was introduced first by Kubo and co-workers [11, 12]
in order to investigate classical stochastic systems. In classical systems, the stochastic
Liouville equation is an equation of motion for a probability distribution function in
phase space under the influence of random forces. There had been a few attempts to
extend the stochastic Liouville equation to quantum systems. Parkins–Gardiner [13, 14]
and Dekker [15] derived a quantum stochastic Liouville equation by obtaining, within
the trace formalism, an adjoint operator of a time-evolution generator for the quantum
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Langevin equation. Furthermore, Gardineret al [16] rederived their stochastic Liouville
equation on the basis of the stochastic Schrödinger equation introduced by Hudsonet al
by making use of the fact that a density operator is a functional of wavefunctions. Within
the density operator formalism, it is impossible to extract an explicit form of the time-
evolution generator satisfying the stochastic Liouville equation, since the Liouville equation
has entanglements between relevant operators and a density operator due to commutators and
anticommutators among them. These difficulties prevent one from constructing a canonical
operator formalism based on the stochastic Liouville equation.

On the other hand, within the framework of non-equilibrium thermo field dynamics
(NETFD) [17–21], a unified canonical operator formalism of quantum stochastic differential
equations was constructed [22–32] on the basis of the stochastic Liouville equation. The
quantum stochastic differential equations include the quantum Langevin equation and the
quantum stochastic Liouville equation together with the corresponding quantum master
equation. Within NETFD, introducing two kinds of operators,with tilde and without
tilde, the entanglements between relevant operators and a density operator in the stochastic
Liouville equation can be disentangled. Therefore, one can extract the explicit form of the
time-evolution generator satisfying the stochastic Liouville equation, which enables us to
construct a unified canonical operator formalism.

In this paper, we will construct quantum Wiener processes by means of
boson annihilation and creation operators with their representation space extending
mathematicians’ procedure and implanting it into NETFD (section 2). The thermal degree of
freedom in the quantum Wiener processes will be introduced by aBogoliubov transformation
in the thermal space which is a representation space within NETFD. On the basis of the
quantum Wiener processes, we will establish a quantum stochastic calculus (section 3).
Requiring the unitarity of the time evolution of the stochastic wavefunction, we will
construct a stochastic Schrödinger equation (section 4). Then, starting from the stochastic
Schr̈odinger equation, we will show how one can obtain the time-evolution generator
satisfying a stochastic Liouville equation with the help of the fact that a density operator
is a functional of wavefunctions together with the principle of correspondence between
quantities in the thermal space and in the Hilbert space (section 5). We will also show how
one can construct a unified canonical operator formalism of quantum stochastic differential
equations on the basis of the time-evolution generator (section 5).

2. Quantum Wiener processes

We will construct quantum Wiener processes at zero temperature according to Hudson and
Parthasarathy [5, 9, 10].

2.1. Fock Space

We introduce boson operatorsb(t) and b†(t) with t ∈ [0,∞) satisfying the canonical
commutation relations

[b(t), b†(t)] = δ(t − s) [b(t), b(s)] = 0 (1)

and define the vacuums|0〉〉 and〈〈0| by

b(t)|0〉〉 = 0 〈〈0|b†(t) = 0. (2)

We introduce ket- and bra-vectors defined by

|t1, . . . , tn〉〉 = 1√
n!
b†(t1) . . . b

†(in)|0〉〉 〈〈t1, . . . , tn| = 〈〈0| 1√
n!
b(t1) . . . b(tn) (3)
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which satisfy the orthonormalization condition

〈〈t1, . . . , tn|s1, . . . , sm〉〉 = δnm 1

n!

∑
P

δ(t1− s1) . . . δ(tn − sn) (4)

and the completeness relation

∞∑
n=0

( n∏
l

∫ ∞
0

dtl

)
|t1, . . . , tn〉〉〈〈t1, . . . , tn| = I. (5)

Here,
∑

P indicates the summation over all possible permutations oft1, . . . , tn with
s1, . . . , sn fixed. Therefore, the set of ket-vectors{|t1, . . . , tn〉〉} and that of bra-vectors
{〈〈t1, . . . , tn|} form complete orthonormal systems. The vector space00 spanned by the
complete orthonormal basic vectors|t1, . . . , tn〉〉 and〈〈t1, . . . , tn| is called theFock space†.

2.2. Quantum Wiener processes

Let us define the operatorsBt andB†t on the Fock space00 by

Bt =
∫ t

0
ds b(s) B

†
t =

∫ t

0
ds b†(s). (6)

Taking expectations ofBt , B
†
t and the productB†t Bs , BtB

†
s with respect to the vacuums

|0〉〉 and〈〈0|, we find that

〈〈0|Bt |0〉〉 = 〈〈0|B†t |0〉〉 = 0 (7)

〈〈0|B†t Bs |0〉〉 = 0 〈〈0|BtB†s |0〉〉 = min(t, s) (8)

where we used (2) and (1). Since the moments (7) and (8) indicate that the operatorsBt and
B
†
t on the Fock space00 can be interpreted as the Wiener process for a quantum system,

we call the operators the quantum Wiener processes‡.

2.3. Product rules

Let us introduce theexponential vectors|e(f )〉〉, 〈〈e(f )| ∈ 00 by

|e(f )〉〉 = exp

[ ∫ ∞
0

dt f (t)b†(t)

]
|0〉〉 〈〈e(f )| = 〈〈0| exp

[ ∫ ∞
0

dt f ∗(t)b(t)
]

(9)

wheref is an element of the setL2 of square integrable functions satisfying
∫∞

0 dt |f (t)|2 <
∞. Since the sets{|e(f )〉〉|f ∈ L2} and {〈〈e(f )||f ∈ L2} of all exponential vectors are
linearly independentand total in the Fock space00 [10], any operator on the Fock space
is characterized by the action on the exponential vectors [5]. The annihilation and creation
operatorsb(t) andb†(t) are characterized by the relations

b(t)|e(f )〉〉 = f (t)|e(f )〉〉 〈〈e(f )|b†(t) = 〈〈e(f )|f ∗(t) (10)

respectively.

† Since annihilation and creation operatorsb(t) andb†(t) satisfy bosonic canonical commutation relations (1), the
vector space00 is also called theboson Fock spaceor thesymmetric Fock space[10].

‡ The processesBt andB†t are also called annihilation and creation processes, respectively [9, 10].
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With the help of the properties (10), the increments dBt = Bt+dt−Bt , dB†t = B†t+dt−B†t
of the quantum Wiener processesBt andB†t defined by (6) are characterized by the following
relations:

〈〈e(f )|dBt |e(f ′)〉〉 = f ′(t) dt〈〈e(f )|e(f ′)〉〉 (11)

〈〈e(f )|dB†t |e(f ′)〉〉 = f ∗(t) dt〈〈e(f )|e(f ′)〉〉. (12)

The products of the increments dBt , dB†t and dt are characterized by the following relations†:
〈〈e(f )|dBt dBt |e(f ′)〉〉 = O(dt2) (13)

〈〈e(f )|dBt dB†t |e(f ′)〉〉 = dt〈〈e(f )|e(f ′)〉〉 +O(dt2) etc. (14)

Taking into account the terms ofO(dt) in L2-space and neglecting the terms ofo(dt),
we have, from the matrix elements (11)–(14), the following product rules [5]:

dBt dB†t dt
dBt 0 dt 0
dB†t 0 0 0
dt 0 0 0

(15)

2.4. Thermal space

We introduce thetilde operators(b̃(t), b̃†(t)) on the spacẽ00 which is a tilde conjugate
spaceof 00 associated with(b(t), b†(t)). Here, thetilde conjugatioñ is defined by the
following rules.

(1) For arbitrary operatorsA1, A2 andA, complexc-numbersc1 andc2, we have

(A1A2)̃ = Ã1Ã2 (16)

(c1A1+ c2A2)̃ = c∗1Ã1+ c∗2Ã2 (17)

(Ã)̃ = A (18)

(A†)̃ = Ã†. (19)

(2) The tilde and non-tilde operators in the Schrödinger representation are mutually
commutative:

[A, B̃] = 0. (20)

Let the vacuums iñ00 be denoted by|0̃〉〉 and〈〈0̃| which are defined by

b̃(t)|0̃〉〉 = 0 〈〈0̃|b̃†(t) = 0. (21)

The tilde conjugate spacẽ00 is the Fock space spanned by the basic vectors which are
introduced by cyclic operations of̃b†(t) on the vacuum|0̃〉〉 and b̃(t) on the vacuum〈〈0̃|.

Now, we consider a tensor product space

0 = 00⊗ 0̃0. (22)

†O(x) indicates that

lim
x→0

O(x)

x
= α 6= 0

while o(x) indicates that

lim
x→0

o(x)

x
= 0.
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The vacuum states|0) and(0| of 0 are defined by

b(t)|0) = b̃(t)|0) = 0 (0|b†(t) = (0|b̃†(t) = 0 (23)

where we have used the notational conventions such as

b(t)⊗ Ĩ ⇒ b(t) b†(t)⊗ Ĩ ⇒ b†(t) (24)

I ⊗ b̃(t)⇒ b̃(t) I ⊗ b̃†(t)⇒ b̃†(t) (25)

whereI and Ĩ stand for identity operators on00 and 0̃0, respectively. In the following,
we will use the conventions. The vacuums|0) and(0| can be written as

|0) = |0〉〉 ⊗ |0̃〉〉 (0| = 〈〈0| ⊗ 〈〈0̃|. (26)

0 is the Fock space spanned by the basic vectors which are introduced by cyclic operations
of (b†(t), b̃†(t)) on the vacuum|0) and (b(t), b̃(t)) on the vacuum(0|. The annihilation
and creation operatorsb(t), b†(t), b̃(t) and b̃†(t) on 0 satisfy the canonical commutation
relations

[b(t), b†(s)] = [b̃(t), b̃†(s)] = δ(t − s) (27)

[b(t), b(s)] = [b̃(t), b̃(s)] = [b(t), b̃(s)] = [b(t), b̃†(s)] = 0. (28)

The thermal degree of freedom can be introduced byBogoliubov transformationin 0.
First, we require that the expectation value ofb†(t)b(s) should be

〈b†(t)b(s)〉 = n̄δ(t − s) (29)

with a real positive number̄n, where〈· · ·〉 indicates the expectation with respect tothermal
ket-vacuum|〉 and thermal bra-vacuum〈|. We find that in order to ensure equation (29), it
is sufficient to impose thethermal state conditionson the states|〉 and〈|:

b(t)|〉 = n̄

1+ n̄ b̃
†(t)|〉 〈|b†(t) = 〈|b̃(t). (30)

In fact, using the conditions (30), we have

〈b†(t)b(s)〉 = n̄

1+ n̄ {〈b
†(t)b(s)〉 + δ(t − s)} (31)

which leads to (29).
We introduce annihilation operators(c(t), c̃(t)) and creation operators(c+

◦
(t), c̃+

◦
(t)) for

the thermal ket-vacuum|〉 satisfying

c(t)|〉 = c̃(t)|〉 = 0 〈|c+◦(t) = 〈|c̃+◦(t) = 0 (32)

and the canonical commutation relations

[c(t), c+
◦
(s)] = [c̃(t), c̃+

◦
(s)] = δ(t − s) (33)

[c(t), c(s)] = [c̃(t), c̃(s)] = [c(t), c̃(s)] = [c(t), c̃+
◦
(s)] = 0 (34)

[c+
◦
(t), c+

◦
(s)] = [c̃+

◦
(t), c̃+

◦
(s)] = [c+

◦
(t), c̃(s)] = [c+

◦
(t), c̃+

◦
(s)] = 0. (35)

Recalling the thermal state conditions (30), we see that such operators(c(t), c+
◦
(t)) and their

tilde conjugates are related to(b(t), b†(t)) and their tilde conjugates through theBogoliubov
transformation[19](

c(t)

c̃+
◦
(t)

)
=
(

1+ n̄ −n̄
−1 1

)(
b(t)

b̃†(t)

)
. (36)

The Bogoliubov transformation is the canonical one such that the canonical commutation
relations do not change under this transformation.
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Let0β denote the boson Fock space spanned by the basic ket- and bra-vectors introduced
by cyclic operations of(c+

◦
(t), c̃+

◦
(t)) on the thermal ket-vacuum|〉 and of(c(t), c̃(t)) on the

thermal bra-vacuum〈|.
The Bogoliubov transformation (36) is generated by

UB = exp

[
−n̄

∫ ∞
0

dt b†(t)b̃†(t)

]
exp

[ ∫ ∞
0

dt b(t)b̃(t)

]
(37)

U−1
B = exp

[
−
∫ ∞

0
dt b(t)b̃(t)

]
exp

[
n̄

∫ ∞
0

dt b†(t)b̃†(t)

]
(38)

as

c(t) = U−1
B b(t)UB c̃+

◦
(t) = U−1

B b̃†(t)UB. (39)

Equations (39) together with the properties (23) and (32) give formally the relations between
the thermal vacuums in0β and the vacuums in0 as follows:

|〉 = U−1
B |0) 〈| = (0|UB. (40)

Using the well known formula of the Lie algebra of the SU(1, 1) group, we can rewrite
U−1

B as a normal ordered product

U−1
B = exp

[
n̄

1+ n̄
∫ ∞

0
dt b†(t)b̃†(t)

]
× exp

[
−ln(1+ n̄)

∫ ∞
0

dt{b†(t)b(t)+ b̃†(t)b̃(t)+ δ(0)}
]

× exp

[
− 1

1+ n̄
∫ ∞

0
dt b(t)b̃(t)

]
. (41)

Here,δ(0) is the delta functionδ(t) with t = 0. Equations (40) and (41) together with the
property (23) give

|〉 = exp

[
−δ(0) ln(1+ n̄)

∫ ∞
0

dt

]
exp

[
n̄

1+ n̄
∫ ∞

0
dt b†(t)b̃†(t)

]
|0). (42)

Sinceδ(0) = ∞, equation (42) shows that any expansion coefficients of the thermal ket-
vacuum|〉 expanded by the complete orthonormal basis in0 vanish. Namely, in the thermal
ket-vacuum|〉, an infinite number of thethermal pairs, which are particle pairs created by
the operatorsb†(t)b̃†(t), are condensed and the Fock space0β is inequivalentto the Fock
space0 in the sense that any vector in0β cannot be written as a superposition of vectors
in 0 andvice versa.

On the other hand, equation (40) together with the expression (37) ofUB gives

〈| = (0| exp

[
− n̄

∫ ∞
0

dt b†(t)b̃†(t)

]
exp

[ ∫ ∞
0

dt b(t)b̃(t)

]
= (0| exp

[ ∫ ∞
0

dt b(t)b̃(t)

]
(43)

where we have used property (23). We see that equation (43) is consistent with the thermal
state condition (30) of the bra-vacuum. In fact, using equation (43) and property (23), we
can prove the thermal state condition (30).
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2.5. Quantum Wiener processes at finite temperatures

Quantum Wiener processes at finite temperatures are defined by the operators

Bt =
∫ t

0
ds b(s) B

†
t =

∫ t

0
ds b†(s) (44)

and their tilde conjugates represented in the Fock space0β . The explicit representations of
the processesBt , B

†
t , B̃t andB̃†t in 0β are given in terms of the Bogoliubov transformation

(36) by

Bt =
∫ t

0
ds[c(s)+ n̄c̃+◦(s)] = Ct + n̄C̃+◦t (45)

B
†
t =

∫ t

0
ds[c̃(s)+ (1+ n̄)c+◦(s)] = C̃t + (1+ n̄)C+◦t (46)

and their tilde conjugates, whereCt , C+
◦
t , C̃t and C̃+

◦
t are the annihilation and creation

processes in0β defined by

Ct =
∫ t

0
ds c(s) C+

◦
t =

∫ t

0
ds c+

◦
(s) (47)

and their tilde conjugates.
Any operator in the Fock space0β can be characterized by the exponential vectors

|e(f, g)〉, 〈e(f, g)| in 0β with f, g ∈ L2 defined by

|e(f, g)〉 = exp

[ ∫ ∞
0

dt{f (t)c+◦(t)+ g∗(s)c̃+◦(s)}
]
|〉 (48)

〈e(f, g)| = 〈|exp

[ ∫ ∞
0

dt{f ∗(t)c(t)+ g(s)c̃(s)}
]

(49)

which satisfy the following relations:

c(t)|e(f, g)〉 = f (t)|e(f, g)〉 〈e(f, g)|c+◦(t) = 〈e(f, g)|f ∗(t) (50)

c̃(t)|e(f, g)〉 = g∗(t)|e(f, g)〉 〈e(f, g)|c̃+◦(t) = 〈e(f, g)|g(t). (51)

As in the case of the construction of annihilation and creation processes(Bt , B
†
t ) on 00,

an evaluation of matrix elements of the products among the increments dCt , dC+
◦
t , dC̃t , dC̃+

◦
t

and dt , with the help of properties (50) and (51), gives the following product rules:

dCt dC+
◦
t dC̃t dC̃+

◦
t dt

dCt 0 dt 0 0 0
dC+

◦
t 0 0 0 0 0

dC̃t 0 0 0 dt 0
dC̃+

◦
t 0 0 0 0 0

dt 0 0 0 0 0

(52)

By making use of the expressions (45), (46) and their tilde conjugates, and the product
rules (52), we can evaluate the products dBt dB†t as

dBt dB†t = [dCt + n̄ dC̃+
◦
t ][dC̃t + (n̄+ 1) dC+

◦
t ]

= dCt dC̃t + (n̄+ 1) dCt dC+
◦
t + n̄ dC̃+

◦
t dC̃t + n̄(n̄+ 1) dC̃+

◦
t dC+

◦
t

= (n̄+ 1) dt. (53)
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Similarly, we can evaluate the other products of the increments of dBt , dB†t , dB̃t , dB̃†t and
dt and obtain the product rules summarized as follows.

dBt dB†t dB̃t dB̃†t dt
dBt 0 (1+ n̄) dt n̄ dt 0 0
dB†t n̄ dt 0 0 (1+ n̄) dt 0
dB̃t n̄ dt 0 0 (1+ n̄) dt 0
dB̃†t 0 (1+ n̄) dt n̄ dt 0 0
dt 0 0 0 0 0

(54)

Using equations (45), (46) and their tilde conjugates, the commutation relation (33) and
the properties (32) of the thermal vacuums, we obtain the moments of the increments dBt ,
dB†t , dB̃t and dB̃†t with respect to the thermal vacuums|〉 and〈| as follows:

〈dBt 〉 = 〈dB†t 〉 = 〈dB̃t 〉 = 〈dB̃†t 〉 = 0 (55)

〈dB†t dBs〉 = 〈dB̃†t dB̃s〉 = 〈dBt dB̃s〉 = 〈dB̃t dBs〉 = n̄δ(t − s) dt ds (56)

〈dBt dB†s 〉 = 〈dB̃t dB̃†s 〉 = 〈dB†t dB̃†s 〉 = 〈dB̃†t dB†s 〉 = (1+ n̄)δ(t − s) dt ds (57)

(others) = 0. (58)

Letting n̄ in (56) and (57) be the Planck distribution given by

n̄ = 1

eβω − 1
(59)

with some positive numberω and the inverse of the temperatureβ = 1/T , we see that the
quantum Wiener processesBt andB†t are essentially equivalent to those introduced in the
problem of quantum optics [3].

3. Quantum stochastic calculus

On the basis of the quantum Wiener processes at finite temperatures, we will investigate
the quantum stochastic calculus.

3.1. Adapted processes

The Fock space0β is decomposed as

0β = 0βt ] ⊗ 0β(t (60)

in which, for f, g ∈ L2,

|e(f, g)〉 = |e(ft ], gt ])〉 ⊗ |e(f(t , g(t )〉 〈e(f, g)| = 〈e(ft ], gt ])| ⊗ 〈e(f(t , g(t )| (61)

where we set

ft ] = f χt ] f(t = f χ(t (62)

and

|〉 = |t ]〉 ⊗ |(t 〉 〈| = 〈t ] | ⊗ 〈(t |. (63)

Here,χt ] andχ(t are defined by

χt ](s) = θ(t − s) χ(t (s) = θ(s − t) for t, s > 0. (64)
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Note that0βt ] is the boson Fock space built on the vacuums|t ]〉 and 〈t ] |, while 0β(t ] is the
boson Fock space built on the vacuums|(t 〉 and 〈(t |. The quantum Wiener processesBt ,
B
†
t , B̃t and B̃†t are operators on the space0βt ] .

Let us consider a space of tensor productHS ⊗0β , whereHS indicates a certain vector
space. For the sake of notational convenience, we identify the quantum Wiener processes
Bt , B

†
t , B̃t and B̃†t with the operators onHS ⊗ 0β , i.e.

IS ⊗ (Bt ⊗ I(t )⇒ Bt IS ⊗ (B†t ⊗ I(t )⇒ B
†
t (65)

IS ⊗ (B̃t ⊗ I(t )⇒ B̃t IS ⊗ (B̃†t ⊗ I(t )⇒ B̃
†
t (66)

whereIS andI(t are the identity operators onHS and0β(t , respectively.
An adapted processFt is defined by

Ft = F 0
t ⊗ I(t (67)

whereF 0
t is an operator onHS⊗0βt ] . According to the notation (65) and (66), the increments

dBt , dB†t , dB̃t and dB̃†t on 0β(t,t+dt ] are identified with the operators onHS ⊗ 0β , i.e.

IS ⊗ (It ] ⊗ dBt ⊗ I(t+dt )⇒ dBt IS ⊗ (It ] ⊗ dB†t ⊗ I(t+dt )⇒ dB†t (68)

IS ⊗ (It ] ⊗ dB̃t ⊗ I(t+dt )⇒ dB̃t IS ⊗ (It ] ⊗ B̃†t ⊗ I(t+dt )⇒ dB̃†t (69)

whereIt ] andI(t+dt are the identity operators on0βt ] and0β(t+dt , respectively. Therefore, for
an adapted processFt , we have

[Ft , dBt ] = [Ft , dB†t ] = [Ft , dB̃t ] = [Ft , dB̃†t ] = 0. (70)

Note that from (65) and (66) the quantum Wiener processesBt , B
†
t , B̃t andB̃†t are adapted.

3.2. Quantum stochastic integrals

Let us consider a case whereXt and B̄#
t denote, respectively, an arbitrary adapted process

onHS ⊗ 0β and one of the quantum Wiener processesBt , B
†
t , B̃t and B̃†t .

Remember that quantum stochastic integrals of Ito type are defined by∫ T

0
Xt dB̄#

t ≡ lim
I−1∑
i=0

Xti (B̄
#
ti+1
− B̄#

ti
) (71)

and ∫ T

0
dB̄#

t Xt ≡ lim
I−1∑
i=0

(B̄#
ti+1
− B̄#

ti
)Xti (72)

while those of the Stratonovich type are defined by∫ T

0
Xt ◦ dB̄#

t ≡ lim
I−1∑
i=0

Xti+1 +Xti
2

(B̄#
ti+1
− B̄#

ti
) (73)

and ∫ T

0
dB̄#

t ◦Xt ≡ lim
I−1∑
i=0

(B̄#
ti+1
− B̄#

ti
)
Xti+1 +Xti

2
. (74)
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We have introduced the following differential notations

Xt dB̄#
t ≡ Xt(B̄#

t+dt − B̄#
t ) (75)

dB̄#
t Xt ≡ (B̄#

t+dt − B̄#
t )Xt (76)

Xt ◦ dB̄#
t ≡

Xt+dt +Xt
2

(B̄#
t+dt − B̄#

t ) (77)

and

dB̄#
t ◦Xt ≡ (B̄#

t+dt − B̄#
t )
Xt+dt +Xt

2
. (78)

Here,ti = i1t and the symbol lim indicates taking the limit

1t −→ +0 I −→ +∞ (79)

keepingT = I1t fixed. We call (75) and (76) the products of Ito type, whereas we refer to
(77) and (78) as the products of Stratonovich type. Note that quantum stochastic integrals
both of Ito and of Stratonovich types are adapted processes.

Property (70) gives us

[Xt, dB̄#
t ] = 0 (80)

in the stochastic calculus of Ito type. Therefore, we have∫ T

0
Xt dB̄#

t =
∫ T

0
dB̄#

t Xt . (81)

In addition, using property (63) of the thermal vacuums and the property

〈|B̄#
t |〉 = 0 (82)

of the quantum Wiener processes, we see that

〈|dB̄#
t Xt |〉 = 〈|Xt dB̄#

t |〉 = 〈t ] |Xt |t ]〉〈(t |dB̄#
t |(t 〉 = 0. (83)

This indicates that there is no correlation betweenXt and dB̄#
t .

It should be pointed out that the increment dB̄#
t does not commute withXt+dt , whereas

it does withXt . Therefore, in the stochastic calculus of Stratonovich type, the commutation
relation ofXt and dB̄#

t defined by

[Xt ◦, dB̄#
t ] ≡ Xt ◦ dB̄#

t − dB̄#
t ◦Xt (84)

is not equal to zero, i.e.

[Xt ◦, dB̄#
t ] 6= 0. (85)

Therefore, in this case we have∫ T

0
Xt ◦ dB̄#

t 6=
∫ T

0
dB̄#

t ◦Xt . (86)

Furthermore, in contrast with the case of Ito type,

〈|Xt ◦ dB̄#
t |〉 6= 0 〈|dB̄#

t ◦Xt |〉 6= 0. (87)

SubstitutionXt+dt = Xt + dXt into (77) and (78) gives us the relations between the
products of Ito and Stratonovich types in the form

Xt ◦ dB̄#
t = Xt dB̄#

t + 1
2 dXt dB̄#

t (88)

and

dB̄#
t ◦Xt = dB̄#

t Xt + 1
2 dB̄#

t dXt . (89)
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3.3. Quantum Ito’s formula

Let us consider an operatorNt representing an adapted process [Nt, dB̄#
t ] = 0;

NT =
∫ T

0
(Ft dBt +Gt dB†t + Jt dB̃t +Kt dB̃†t +Ht dt) (90)

whereFt , Gt , Ht , Jt andKt are adapted processes. Its differential notation is given by

dNt = Ft dBt +Gt dB†t + Jt dB̃t +Kt dB̃†t +Ht dt. (91)

It should be noted that the increment dNt does not commute with an arbitrary adapted
processXt in general, i.e.

[Xt, dNt ] 6= 0 (92)

because dNt includes not only the increments dBt , dB†t , dB̃t and dB̃†t but also the adapted
processesFt , Gt , Jt , Kt andHt . Furthermore, for the adapted processXt and the increment
dNt , the property, such as (83), does not hold because of the termHt dt†, i.e.

〈|Xt dNt |〉 = 〈|XtHt |〉 dt 6= 0 〈|dNtXt |〉 = 〈|HtXt |〉 dt 6= 0. (93)

Let N ′t be another stochastic integral defined by

N ′T =
∫ T

0
(F ′t dBt +G′t dB†t + J ′t dB̃t +K ′t dB̃†t +H ′t dt) (94)

with adapted processesF ′t , G
′
t , H

′
t , J

′
t andK ′t , of which the differential notation is given

by

dN ′t = F ′t dBt +G′t dB†t + J ′t dB̃t +K ′t dB̃†t +H ′t dt. (95)

The productNt+dtN
′
t+dt is calculated as

Nt+dtN
′
t+dt = (Nt + dNt)(N

′
t + dN ′t ) = NtN ′t +Nt dN ′t + dNtN

′
t + dNt dN ′t (96)

where dNt and dN ′t are given by (91) and (95), respectively. In contrast with the ordinary
calculus, the last term dNt dN ′t of (96) is not the order ofo(dt). In fact, using property (70)
and the product rules (54), we obtain

dNt dN ′t = [(1+ n̄)(FtG′t +GtK
′
t + JtK ′t +KtG′t )+ n̄(FtJ ′t +GtF

′
t + JtF ′t +KtJ ′t )] dt.

(97)

With the help of expressions (91) and (95) together with (97), we find that (96) gives

d(NtN
′
t ) = (NtF ′t + FtN ′t ) dBt + (NtG′t +GtN

′
t ) dB†t

+(NtJ ′t + JtN ′t ) dB̃t + (NtK ′t +KtN ′t ) dB̃†t
+[NtH

′
t +HtN ′t + (1+ n̄)(FtG′t +GtK

′
t + JtK ′t +KtG′t )

+n̄(FtJ ′t +GtF
′
t + JtF ′t +KtJ ′t )] dt. (98)

As we saw in deriving (98),quantum Ito’s formula

d(NtN
′
t ) = dNt ·N ′t +Nt · dN ′t + dNt dN ′t (99)

holds for stochastic integralsNt andN ′t defined by (90) and (94), respectively [5, 9, 10].
Making use of relations (88) and (89) between the Ito and the Stratonovich products,

we have

Nt ◦ dN ′t = Nt dN ′t + 1
2 dNt dN ′t (100)

† WhenHt = 0, dNt satisfies〈〈0|Xt dNt |0〉〉 = 〈〈0|dNtXt |0〉〉 = 0, although dNt still does not commute withXt ,
i.e. [Xt , dNt ] 6= 0. WhenHt = 0, Nt is called themartingale[7, 33].
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and

dNt ◦N ′t = dNtN
′
t + 1

2 dNt dN ′t . (101)

Therefore, we find that quantum Ito’s formula (99) is expressed in terms of the Stratonovich
products as

d(NtN
′
t ) = dNt ◦N ′t +Nt ◦ dN ′t (102)

which is identical to the well known formula of ordinary differential calculus.

4. Stochastic Schr̈odinger equation

In this section, we review the stochastic Schrödinger equation investigated by Hudson and
Lindsay [7].

4.1. Ito type

We consider a boson system which is described by the operatorsa anda† on a Hilbert space
H0
S satisfying the commutation relations

[a, a†] = 1 [a, a] = 0 (103)

and which interacts with a reservoir at finite temperatures. Let us suppose that the effect of
the reservoir on the system is taken into account by the random force operators represented
by the quantum Wiener processes at finite temperatures constructed on the Fock space
0β . We sometimes call the boson system the relevant system and the reservoir system the
irrelevant system.

The state of the system is described by the state vector|ψf (t)〉〉 in the spaceH0
S ⊗ 0β .

The state vector|ψf (t)〉〉 is assumed to evolve in time according to the Schrödinger equation

d|ψf (t)〉〉 = −iHf,t dt |ψf (t)〉〉 (104)

with an infinitesimal time-evolution generatorHf,t dt including random force operators. We
call equation (104) thestochastic Schr¨odinger equation.

The formal solution of (104) is written by

|ψf (t)〉〉 = Vf (t)|ψf (0)〉〉 (105)

whereVf (t) is the stochastic time-evolution generator satisfying the equation

dVf (t) = −iHf,t dtVf (t) (106)

with Vf (0) = 1. Note that the bra-vector〈〈ψf (t)| is defined by

〈〈ψf (t)| = 〈〈ψf (0)|V −1
f (t) (107)

whereV −1
f (t) is the inverse ofVf (t).

For a bi-linear and phase invariant boson system with the interaction

i
√

2κ(a† dBt − a dB†t )

Hf,t dt has the form

Hf,t dt = Z dt + i
√

2κ(a† dBt − a dB†t ) (108)

with the relevant system operatorZ ∈ H0
S . dBt and dB†t are the increments of the quantum

Wiener processes at finite temperatures andκ is a positivec-number. Note that we adopt the
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same notation forBt , B
†
t and their tilde conjugates̃Bt , B̃

†
t as (65) and (66). Furthermore,

we use the following notation for the relevant system operators

Z ⊗ IR ⇒ Z a ⊗ IR ⇒ a etc. (109)

Note that since equation (106) with the infinitesimal time-evolution generator (108) is
the quantum stochastic differential equation of Ito type, the time-evolution generatorVf (t)

is the quantum stochastic integral of Ito type which is an adapted process.
We require that the time-evolution generatorVf (t) should be unitary, i.e.

V
†
f (t)Vf (t) = Vf (t)V †f (t) = 1. (110)

Therefore, we have the algebraic identities

d[V †f (t)Vf (t)] = dV †f (t) · Vf (t)+ V †f (t) · dVf (t)+ dV †f (t) dVf (t) = 0 (111)

and

d[Vf (t)V
†
f (t)] = dVf (t) · V †f (t)+ Vf (t) · dV †f (t)+ dVf (t) dV †f (t) = 0 (112)

where we have made use of the calculus rule of Ito type (quantum Ito’s formula). The
identities (111) and (112) with equation (106) and its Hermitian conjugate give the following
relation,

i(Z† − Z)+ 2κ
[
(n̄+ 1)a†a + n̄aa†] = 0 (113)

where use has been made of the product rules (54). Thus, we obtain

Hf,t dt = HS dt − iκ[(1+ n̄)a†a + n̄aa†] dt + i
√

2κ(a† dBt − a dB†t ) (114)

where we have put(Z+Z†)/2= HS . Note thatHS is Hermitian. In the following, we will
put n̄ to the Planck distribution function (59).

Applying equation (106) ofVf (t) to the state vector|ψf (0)〉〉, we have the stochastic
Schr̈odinger equation of Ito type

d|ψf (t)〉〉 = −iHf,t dt |ψf (t)〉〉 (115)

with the infinitesimal time-evolution generator (114).

4.2. Stratonovich type

Using the relation (89) between the Ito and the Stratonovich products, we transform the
stochastic differential equation (106) of Ito type into that of Stratonovich type as

dVf (t) = − iHf,t dtVf (t)

= − i{Hf,t dt ◦ Vf (t)− 1
2Hf,t dt dVf (t)}

≡ −iHf,t dt ◦ Vf (t) (116)

where we have substituted (106) into the right-hand side of the second equality. Here, we
have defined the infinitesimal time-evolution generatorHf,t of Stratonovich type by

Hf,t dt ≡ Hf,t dt + i 1
2Hf,t dtHf,t dt. (117)

With the help of the product rules (54), we obtain the Hermitian stochastic infinitesimal
time-evolution generatorHf,t dt as

Hf,t dt = HS dt + i
√

2κ(a† dBt − a dB†t ). (118)

The Hermiticy ofHf,t dt guarantees the unitarity ofVf (t).
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Applying equation (116) ofVf (t) to the state vector|ψf (0)〉〉, we obtain the stochastic
Schr̈odinger equation of Stratonovich type

d|ψf (t)〉〉 = −iHf,t dt ◦ |ψf (t)〉〉 (119)

with the infinitesimal time-evolution generator (118).

5. Stochastic time-evolution in thermal space

On the basis of the stochastic Schrödinger equation, investigated in the previous section,
we will construct a stochastic Liouville equation in thermal space and obtain the explicit
form of the time-evolution generator satisfying the stochastic Liouville equation within
the framework of NETFD. Using the time-evolution generator, we will construct a unified
canonical operator formalism of quantum stochastic differential equations.

5.1. Thermal vacuums

Let us define the density operatorρf (t) corresponding to the state vector|ψf (t)〉〉 by

ρf (t) ≡ |ψf (t)〉〉〈〈ψf (t)|. (120)

Using (105) and (107) with the unitary time-evolution generatorVf (t), we see that (120)
becomes

ρf (t) = Vf (t)|ψf (0)〉〉〈〈ψf (0)|V †f (t) = Vf (t)ρf (0)V †f (t). (121)

The density operatorρf (t) satisfies

trtotρf (t) = 1 (122)

where the trace operation trtot is defined by

trtot ≡ tr⊗ trR (123)

with the trace operations tr of the relevant system and trR of the reservoir. The expectation
value of any observableA is given by trtotAρf (t).

With the help of the principle of correspondence (see the appendix), the density operator
ρf (t) defined by (121) is expressed as a thermal ket-vacuum, i.e.

|0f (t)〉 ≡ |ρf (t)〉 = V̂f (t)|0f (0)〉 (124)

where we have defined the stochastic time-evolution generator by

V̂f (t) = Vf (t)Ṽf (t). (125)

Note that, sinceVf (0) = 1, we haveV̂f (0) = 1. The vector space to which the thermal
vacuum|0f (t)〉 belongs is assumed to beHS ⊗ 0β whereHS is the tensor product space
of relevant systemH0

S and its tilde conjugate spacẽH0
S , i.e. HS = H0

S ⊗ H̃0
S , and0β is the

Fock space of the quantum Wiener processes at finite temperatures constructed in section 2.
The operatorV̂f (t) defined by (125) is that on the spaceHS⊗0β and turns out to be unitary
from the relation

V̂
†
f (t) = V †f (t)Ṽ †f (t) = V −1

f (t)Ṽ −1
f (t) = V̂ −1

f (t) (126)

where use has been made of the unitarity ofVf (t).
Equation (122) requires that

〈1tot|0f (t)〉 = 1 (127)
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where the thermal bra-vacuum〈1tot| is defined by

〈1tot| ≡ 〈|〈1| (128)

with the thermal bra-vacuum〈1| in the spaceHS of the relevant system and the thermal
bra-vacuum〈| in the space0β of the irrelevant system. The expectation value trtotAρf (t) is
expressed as the expectation with respect to the thermal ket-vacuum|0f (t)〉 and the thermal
bra-vacuum〈1tot|, i.e.

trtotAρf (t) = 〈1tot|A|0f (t)〉. (129)

Note that, for any relevant system operatorA, we have

〈1|A† = 〈1|Ã (130)

which is the basic property of thermal space [19–21]. Furthermore, for the random force
operators dBt and dB†t , we have

〈|dB†t = 〈|dB̃t (131)

which follows from (30).
The equation (127) together with (124) yields

〈1tot|V̂f (t)|0f (0)〉 = 1. (132)

Since equation (132) should hold for any timet and for any initial thermal vacuum|0f (0)〉,
we have

〈1tot|V̂f (t) = 〈1tot|V̂f (0) = 〈1tot| (133)

where we have used the fact thatV̂f (0) = 1.

5.2. Stochastic Liouville equation

5.2.1. Ito type. Using the calculus rule of Ito type, we have from (125)

dV̂f (t) = dVf (t) · Ṽf (t)+ Vf (t) · dṼf (t)+ dVf (t) dṼf (t). (134)

Substituting (106) and its tilde conjugate

dṼf (t) = iH̃f,t dt Ṽf (t) (135)

into (134), we have

dV̂f (t) = −iĤf,t dt V̂f (t) (136)

where

Ĥf,t dt ≡ Hf,t dt − H̃f,t dt + iHf,t dtH̃f,t dt. (137)

With the help of (114) and the product rules (54),Hf,t dtH̃f,t dt is calculated as

Hf,t dtH̃f,t dt = 2κ[(n̄+ 1)aã + n̄a†ã†] dt. (138)

Putting (114) and (138) into (137), we obtain

Ĥf,t dt = ĤS dt + i(5̂R+ 5̂D) dt + dM̂t (139)

where

ĤS = HS − H̃S (140)

5̂R = −κ[(a† − ã)(µa + νã†)+ TC] (141)

5̂D = 2κ(n̄+ ν)(a† − ã)(ã† − a) (142)
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and

dM̂t = i{[(a† − ã) dWt + TC] − [(µa + νã†) dW +◦
t + TC]} (143)

with real numbersµ and ν satisfyingµ + ν = 1. Here, TC indicates the tilde conjugate
of the previous term.5̂R and5̂D represent relaxation and diffusion term respectively The
operators dWt and dW +◦

t are defined by

dWt ≡
√

2κ(µ dBt + ν dB̃†t ) dW +◦
t ≡
√

2κ(dB†t − dB̃t ). (144)

Making use of relations (130) and (131), we see that (139) satisfies

〈1tot|Ĥf,t dt = 〈|〈1|Ĥf,t dt = 0 (145)

which is consistent with relation (133) and assures the conservation of probability (127).
Note that

〈1|Ĥf,t dt 6= 0 (146)

which indicates that the conservation of probability does not hold within only the space of
states of the relevant system, i.e.

〈1|0f (t)〉 6= 1. (147)

Similarly, from the definition

V̂
†
f (t) = V †f (t)Ṽ †f (t) (148)

we obtain

dV̂ †f (t) = iV̂ †f (t)Ĥ−f,t dt (149)

with

Ĥ−f,t dt = ĤS dt − i(5̂R+ 5̂D) dt + dM̂t . (150)

Note thatĤ−f,t dt is not the Hermitian conjugate of̂Hf,t dt .
We see that equations (136) with (139) and (149) with (150) satisfy

dV̂ †f (t) · V̂f (t)+ V̂ †f (t) · dV̂f (t)+ dV̂ †f (t) dV̂f (t) = 0 (151)

and

dV̂f (t) · V̂ †f (t)+ V̂f (t) · dV̂ †f (t)+ dV̂f (t) dV̂ †f (t) = 0 (152)

which are consistent with the unitarity of̂Vf (t).
Since V̂f (t) and V̂ †f (t) are subject to the stochastic differential equations (136) with

(139) and (149) with (150) of Ito type, respectively, they are quantum stochastic processes
consisting of quantum stochastic integrals of Ito type. Therefore,V̂f (t) and V̂ †f (t) are
adapted processes.

Applying equation (136) of̂Vf (t) to the thermal vacuum|0f (0)〉, we obtain the quantum
stochastic Liouville equation of Ito type

d|0f (t)〉 = −iĤf,t dt |0f (t)〉 (153)

with the infinitesimal time-evolution generator (139).
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5.2.2. Stratonovich type.Using the calculus rule of Stratonovich type, we have from (125)

dV̂f (t) = dVf (t) ◦ Ṽf (t)+ Vf (t) ◦ dṼf (t). (154)

Substituting (116) and its tilde conjugate

dṼf (t) = iH̃f,t dt ◦ Ṽf (t) (155)

into (154), we obtain

dV̂f (t) = −iĤf,t dt ◦ V̂f (t) (156)

where

Ĥf,t dt ≡ Hf,t dt − H̃f,t dt. (157)

Putting (118) into (157), we get

Ĥf,t dt = ĤS dt + dM̂t (158)

which is apparently Hermitian.
Similarly, from definition (148), we obtain the equation ofV̂ †f (t) as

dV̂ †f (t) = iV̂ †f (t) ◦ Ĥf,t dt (159)

where use has been made of the hermiticy ofĤf,t dt . Note that (159) is the Hermitian
conjugate of equation (156).

Equations (156) and (159) with (158) satisfy the following equations,

dV̂ †f (t) ◦ V̂f (t)+ V̂ †f (t) ◦ dV̂f (t) = 0 (160)

dV̂f (t) ◦ V̂ †f (t)+ V̂f (t) ◦ dV̂ †f (t) = 0 (161)

which show the unitarity ofV̂f (t).
With the help of properties (130) and (131), we see that expression (158) satisfies

〈1tot|Ĥf,t dt = 〈|〈1|Ĥf,t dt = 0 (162)

which is consistent with (133).
The time-evolution equation (136) of Ito type with (39) is connected to equation (156)

of Stratonovich type with (158) by the relation (89) between the Ito and the Stratonovich
products. In the same way, equation (149) of Ito type with (150) is connected to equation
(159) of Stratonovich type with (158) through the relation (88).

Applying equation (156) ofV̂f (t) to the thermal vacuum|0f (0)〉, we have the quantum
stochastic Liouville equation of Stratonovich type

d|0f (t)〉 = −iĤf,t dt ◦ |0f (t)〉 (163)

with the infinitesimal time-evolution generator (158).

5.3. Quantum master equation

Applying the stochastic Liouville equation (153) of Ito type with the infinitesimal time-
evolution generator (139) to the random force bra-vacuum〈|, we have

d〈|0f (t)〉 = −i〈|Ĥf,t dt |0f (t)〉
= −i[{ĤS + i(5̂R+ 5̂D)} dt〈|0f (t)〉 + 〈|dM̂t |0f (t)〉]. (164)
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Under the assumption†
|0f (0)〉 = |0S〉|〉 (165)

with the thermal vacuum|0S〉 of the relevant system att = 0, 〈|dM̂t |0f (t)〉 can be evaluated
as

〈|dM̂t |0f (t)〉 = 〈|dM̂t V̂f (t)|〉|0S〉 = 0 (166)

where we have used the definition (124) of the thermal vacuum|0f (t)〉 and the property
(83) of the products of Ito type. Therefore, putting|0(t)〉 = 〈|0f (t)〉, we finally obtain the
quantum master equation for the bi-linear and phase invariant system as

∂

∂t
|0(t)〉 = −iĤ |0(t)〉 (167)

where the infinitesimal time-evolution generatorĤ is given by

Ĥ = ĤS + i5̂ (168)

with

5̂ = 5̂R+ 5̂D

= −κ[(1+ 2n̄)(a†a + ã†ã)− 2(1+ n̄)aã − 2n̄a†ã†] − 2κn̄ (169)

which is identical to that obtained within the framework of NETFD [17–21]. Note that
we can also derive the quantum master equation (167) by applying the stochastic Liouville
equation (163) of Stratonovich type with the infinitesimal time-evolution generator (158) to
the random force bra-vacuum〈| [19, 22].

Recalling equation (124) and taking (165) into account, we find that

|0(t)〉 = 〈|V̂f (t)|〉|0S〉. (170)

On the other hand, the time-evolution generatorV̂ (t) of the thermal ket-vacuum|0(t)〉 is
defined by

|0(t)〉 = V̂ (t)|0(0)〉. (171)

Provided that|0(0)〉 = |0S〉, equations (170) and (171) yield

V̂ (t) = 〈|V̂f (t)|〉. (172)

5.4. Quantum Langevin equation

5.4.1. Operators in the Heisenberg representation.SinceV̂f (t) is unitary, we have

V̂
†
f (t)V̂f (t) = V̂f (t)V̂ †f (t) = 1. (173)

From equation (173), we see with the help of property (133) that

〈1tot|V̂ †f (t) = 〈1tot|. (174)

The expectation value of any observableA with respect to the state|0f (t)〉 is given by

〈1tot|A|0f (t)〉 = 〈1tot|AV̂f (t)|0f (0)〉 = 〈1tot|V̂ †f (t)AV̂f (t)|0f (0)〉 (175)

where we have used equation (124) and property (174). If we define the operator in the
Heisenberg representation

A(t) = V̂ †f (t)AV̂f (t) (176)

† Equation (165) indicates that|0f (0)〉 is the tensor product of|0S〉 and |〉, i.e. |0f (0)〉 = |0S〉 ⊗ |〉. In the
following, we omit the symbol⊗.
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we consider (175) to be the expectation value ofA(t) with respect to the initial state|0f (0)〉.
Note that, asV̂f (t) and V̂ †f (t) are adapted processes, the operatorA(t) defined by (176) is
also an adapted process. Therefore, the following commutation relation holds

[A(t), dBt ] = [A(t), dB†t ] = [A(t), dB̃t ] = [A(t), dB̃†t ] = 0 (177)

for quantum Wiener processesBt , B
†
t and their tilde conjugates̃Bt , B̃

†
t , which comes from

(80).
Any operators in the Heisenberg representation defined by (176) keep the equal-time

commutation relations, such as

[a(t), a†(t)] = 1 [ã(t), ã†(t)] = 1. (178)

Note that, using the properties (130) and (174), we have forA(t) defined by (176)

〈1tot|A†(t) = 〈1tot|Ã(t). (179)

5.4.2. Ito type. Using the calculus rule of Ito type, we have the algebraic identity for the
operatorA(t) defined by (176)

dA(t) = dV̂ †f (t)AV̂f (t)+ V̂ †f (t)A dV̂f (t)+ dV̂ †f (t)A dV̂f (t). (180)

Substituting equations (136) with (139) and (149) with (150) into (180), we obtain the
quantum Langevin equation of Ito type:

dA(t) = i[ĤS(t), A(t)] dt + κ{[a†(t)− ã(t), A(t)](µa(t)+ νã†(t))
−(a†(t)− ã(t))[µa(t)+ νã†(t), A(t)]
+[ã†(t)− a(t), A(t)](µã(t)+ νa†(t))
−(ã†(t)− a(t))[µã(t)+ νa†(t), A(t)]} dt
+2κ(n̄+ ν)[ã†(t)− a(t), [a†(t)− ã(t), A(t)]] dt

−{[a†(t)− ã(t), A(t)] dWt + [ã†(t)− a(t), A(t)] dW̃t }
+{[µa(t)+ νã†(t), A(t)] dW +◦

t + [µã(t)+ νa†(t), A(t)] dW̃ +◦
t }. (181)

5.4.3. Stratonovich type.Making use of the calculus rule of Stratonovich type, we have
the algebraic identity for the operatorA(t) defined by (176)

dA(t) = dV̂ †f (t) ◦ AV̂f (t)+ V̂ †f (t)A ◦ dV̂f (t). (182)

With the help of equation (156) and its Hermitian conjugate (159) together with the identity
(182), we obtain the quantum Langevin equation of Stratonovich type. We see that the
quantum Langevin equation of Stratonovich type can be expressed as the Heisenberg
equation forA(t):

dA(t) = i[Ĥf (t) dt ◦, A(t)] (183)

where we have defined

Ĥf (t) dt = V̂ †f (t) ◦ Ĥf,t dt ◦ V̂f (t). (184)

The symbol [· ◦, ·] is the commutator defined by (84). Recalling (158), we have the explicit
form of equation (183) as

dA(t) = i[ĤS(t), A(t)] dt

−{[a†(t)− ã(t), A(t)] ◦ dW(t)+ [ã†(t)− a(t), A(t)] ◦ dW̃ (t)}
+{[µa(t)+ νã†(t), A(t)] ◦ dW +◦(t)

+[µã(t)+ νa†(t), A(t)] ◦ dW̃ +◦(t)} (185)
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where we defined the operators dW(t), dW +◦(t), dW̃ (t), dW̃ +◦(t) by

dW(t) ≡ V̂ †f (t) ◦ dWt ◦ V̂f (t) (186)

dW +◦(t) ≡ V̂ †f (t) ◦ dW +◦
t ◦ Ŝf (t) (187)

dW̃ (t) ≡ V̂ †f (t) ◦ dW̃t ◦ V̂f (t) (188)

dW̃ +◦(t) ≡ V̂ †f (t) ◦ dW̃ +◦
t ◦ Ŝf (t). (189)

Using the relations (88) and (89) between the products of Ito and Stratonovich types
and the product rules (54), we can express dW(t), dW +◦(t), dW̃ (t), dW̃ +◦(t) in terms of dWt ,
dW +◦

t , dW̃t , dW̃ +◦
t , respectively, as follows:

dW(t) = dWt − κ[µa(t)+ νã†(t)] dt (190)

dW +◦(t) = dW +◦
t − κ[a†(t)− ã(t)] dt (191)

dW̃ (t) = dW̃t − κ[µã(t)+ νa†(t)] dt (192)

dW̃ +◦(t) = dW̃ +◦
t − κ[ã†(t)− a(t)] dt. (193)

Substituting (190)–(193) into (185), we see that the quantum Langevin equation (185) of
Stratonovich type becomes

dA(t) = i[ĤS(t), A(t)] dt

+κ{[a†(t)− ã(t), A(t)](µa(t)+ νã†(t))
−(a†(t)− ã(t))[µa(t)+ νã†(t), A(t)]
+[ã†(t)− a(t), A(t)](µã(t)+ νa†(t))
−(ã†(t)− a(t))[µã(t)+ νa†(t), A(t)]} dt
−{[a†(t)− ã(t), A(t)] ◦ dWt + [ã†(t)− a(t), A(t)] ◦ dW̃t }
+{dW +◦

t ◦ [µa(t)+ νã†(t), A(t)]
+dW̃ +◦

t ◦ [µã(t)+ νa†(t), A(t)]}. (194)

Furthermore, with the help of the relations (88) and (89) between the products of Ito and
Stratonovich types and the product rules (54), we find that the equation of Stratonovich type
(194) is identical to equation (181) of Ito type.

5.5. The equation of motion of the expectation value

Let us assume that the initial vacuum|0f (0)〉 ≡ |0f 〉 can be expressed by the product of
the vacuums of the relevant and the irrelevant systems as (165).

Applying the quantum Langevin equation (181) of Ito type to the bra-vacuum〈1tot|, we
have

d〈1tot|A(t) = i〈1tot|[HS(t), A(t)] dt

+κ(〈1tot|a†(t)[A(t), a(t)] + 〈1tot|[a†(t), A(t)]a(t)) dt

+2κn̄〈1tot|[a†(t), [A(t), a(t)]] dt

+〈1tot|[A(t), a†(t)] dFt + 〈1tot|[a(t), A(t)] dF †t (195)

where we have used properties (131) and (179).
Putting the ket-vacuum|0f 〉 into (195), we obtain the equation of motion of the

expectation value of an arbitrary operatorA of the relevant system:

d

dt
〈1tot|A(t)|0f 〉 = i〈1tot|[HS(t), A(t)]|0f 〉
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+κ(〈1tot|a†(t)[A(t), a(t)]|0f 〉 + 〈1tot|[a†(t), A(t)]a(t)|0f 〉)
+2κn̄〈1tot|[a†(t), [A(t), a(t)]] |0f 〉. (196)

Here, we have used the property (83) of the Ito products.
Remembering (172) and the definition (176) ofA(t), we find with the assumption (165)

that

〈1tot|A(t)|0f 〉 = 〈|〈1|V̂ †f (t)AV̂f (t)|0S〉|〉 = 〈1|A|0(t)〉 (197)

where we have used property (174) and the assumption that|0(0)〉 = |0S〉. Taking account
of relation (197), we see that equation (196) of the expectation value is identical to the
equation derived from the master equation (167) with (168) and (169), which shows the
consistency of the framework.

6. Summary and discussion

In this paper, we constructed the quantum Wiener processes together with their
representation space by extending the work of mathematicians and by implanting it into
NETFD. Then, we constructed a unified system of quantum stochastic differential equations
on the basis of the stochastic Schrödinger equation which was studied by mathematicians.

The quantum Wiener processes were constructed by using boson operators with time
indices. When we adopted the Fock space00 for the representation space, in the same
way as Hudson and Parthasarathy, we obtained the quantum Wiener processes at zero
temperature. However, we obtained the quantum Wiener processes at finite temperatures by
extending the representation space to the Fock space0β which is obtained by the Bogoliubov
transformation in the tensor product space0 = 00 ⊗ 0̃0. This is the reconstruction of
quantum Wiener processes at finite temperatures introduced by Hudson and Lindsay [7, 8],
within the framework of NETFD. Within NETFD, the thermal degree of freedom was
introduced by the thermal state conditions or the Bogoliubov transformation, which is a
manifestation of unitary inequivalence between the thermal vacuums of zero and finite
temperatures. This notion of unitary inequivalence between the vacuums with different
temperatures is one of the remarkable features within NETFD or TFD. The quantum Wiener
processes and the quantum stochastic calculus given in this paper provide the foundation
for those used in quantum optics [3] and quantum stochastic differential equations within
NETFD [22–32].

We constructed the stochastic Schrödinger equation with the quantum Wiener processes
at finite temperatures on the requirement that the time-evolution generator should be unitary.
Then, we introduced the density operator corresponding to the stochastic wavefunction.
By means of the principle of correspondence between quantities in thermal space and in
Hilbert space, we obtained the stochastic thermal ket-vacuum corresponding to the density
operator. The time-evolution equation (Schrödinger equation) of the thermal ket-vacuum
gave the quantum stochastic Liouville equation. On the other hand, the Heisenberg equation
with the infinitesimal time-evolution generator of the quantum stochastic Liouville equation
gave the quantum Langevin equation. Using the quantum stochastic calculus constructed in
section 3, we constructed the quantum stochastic differential equations both of Ito and of
Stratonovich types.

Applying the stochastic Liouville equation of Ito type to the random force bra-vacuum
〈|, we obtained the quantum master equation, which is identical to that derived in papers
[17–21]. Taking the expectation with respect to the thermal ket-vacuum|0f 〉 and the thermal
bra-vacuum〈1tot| of the quantum Langevin equation of Ito type, we obtained the equation
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of motion of the expectation value of an arbitrary relevant system operator. This equation of
motion is equivalent to that derived by the master equation, which shows the self-consistency
of the system.

Hudson and Lindsay constructed a unitary stochastic time evolution in the vector space
H0
S ⊗ 0β , whereH0

S for the relevant system is a usual Hilbert space and0β for random
force operators is a Fock space in thermal space, which was briefly reviewed in section 4.
The fact that the vector space for the relevant system is not a thermal space prevents the
system from introducing the quantum stochastic Liouville equation. In this paper, we gave
the quantum stochastic Liouville equation by adopting a thermal space for the space of
states of the relevant system as well as for the random force system.

The stochastic time evolution in thermal space constructed in this paper is unitary. On
the other hand, non-unitary stochastic time evolution was constructed within the framework
of NETFD [22–32]. In this way, it turned out that there exist two kinds of systems in
quantum stochastic differential equations within NETFD; one is the system of non-unitary
stochastic time evolution and the other is that of unitary stochastic time evolution. The
two systems are equivalent in the sense that they give the same equation of motion of
the expectation value of any observable. The relation between the two systems will be
investigated in a forthcoming paper.

Appendix. The principle of correspondence

The correspondence between vectors in the thermal space and operators in a Hilbert space
is given by the following rule [17, 18, 34]:

ρS(t)←→ |0(t)〉 (198)

A1ρS(t)A2←→ A1Ã
†
2|0(t)〉. (199)

Here,ρS(t) is a density operator on the Hilbert space, whereas|0(t)〉 is a thermal ket-vacuum
in the thermal space.A1 andA2 are arbitrary operators on the Hilbert space.

It was noticed first by Crawford [35] that the introduction of two kinds of operators for
each operator enables us to handle the Liouville equation as the Schrödinger equation.

References

[1] Senitzky I R 1960Phys. Rev.119 670
[2] Lax M 1966 Phys. Rev.145 110
[3] Haken H 1970Optics. Handbuch der Physikvol XXV/2c (Berlin: Springer) and the references therein

(reprinted as Haken H 1984Lasers Theory(Berlin: Spinger))
[4] Kubo R 1969J. Phys. Soc. Japan26 suppl 1
[5] Hudson R L and Parthasarathy K R 1984Commun. Math. Phys.93 301
[6] Hudson R L and Parthasarathy K R 1984Acta Appl. Math.2 353
[7] Hudson R L and Lindsay J M 1984Quantum Probability and Applications II (Lecture Notes in Mathematics

1136)ed L Accardi and W von Waldenfels (Berlin: Springer) p 276
[8] Hudson R L and Lindsay J M 1985J. Funct. Anal.61 202
[9] Parthasarathy K R 1989Rev. Mod. Phys.1 89

[10] Parthasarathy K R 1992 An Introduction to Quantum Stochastic Calculus (Monographs in Mathematics 85)
(Basel: Birkḧauser)
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