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Abstract. Within the framework of non-equilibrium thermo field dynamics (NETFD), quantum
Wiener processes at finite temperatures are constructed, and its representation space is shown
to be the thermal space. After the introduction of the stochastiodsiger equation, a unified
system of quantum stochastic differential equations, including the quantum stochastic Liouville
equation and the quantum Langevin equation, is established within the quantum stochastic
calculus.

1. Introduction

Studies of the Langevin equation for quantum systems were started by Senitzky [1], Lax

[2] and Haken [3]. They investigated the Langevin equation for a quantum mechanical

damped harmonic oscillator. In the quantum Langevin equation, variables in both relevant
and irrelevant systems are stochastic operators. Putting the condition that the equal-time
canonical commutation relation should hold for all time even for stochastic operators, they

derived commutation relations among random force operators and their correlations.

In their studies, Senitzky, Lax and Haken did not construct a representation space
explicitly. In quantum theory, observable operators do not have physical meaning until a
representation space is specified. As was pointed out by Kubo [4], the quantum Langevin
equation is an operator equation defined on a total representation space, i.e. a space of a
relevant system and of random forces. Any representation space of random force operators
had not been constructed by physicists.

Mathematicians such as Hudson, Parthasarathy and their co-workers [5—10] constructed
explicitly a representation space of random force operators. With the representation
space, they realized a stochastic Sclimger equation by analogy with the usual quantum
mechanics. A time-evolution generator satisfying the stochastico8ttyer equation was
determined on the requirement of its unitarity, which is one of the necessary conditions
for construction of a canonical operator formalism. It seems that, for mathematicians, a
construction of the stochastic Liouville equation was out of their considerations.

The stochastic Liouville equation was introduced first by Kubo and co-workers [11, 12]
in order to investigate classical stochastic systems. In classical systems, the stochastic
Liouville equation is an equation of motion for a probability distribution function in
phase space under the influence of random forces. There had been a few attempts to
extend the stochastic Liouville equation to quantum systems. Parkins—Gardiner [13, 14]
and Dekker [15] derived a quantum stochastic Liouville equation by obtaining, within
the trace formalism, an adjoint operator of a time-evolution generator for the quantum
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Langevin equation. Furthermore, Gardiredral [16] rederived their stochastic Liouville
equation on the basis of the stochastic ®dimger equation introduced by Hudsen al

by making use of the fact that a density operator is a functional of wavefunctions. Within
the density operator formalism, it is impossible to extract an explicit form of the time-
evolution generator satisfying the stochastic Liouville equation, since the Liouville equation
has entanglements between relevant operators and a density operator due to commutators and
anticommutators among them. These difficulties prevent one from constructing a canonical
operator formalism based on the stochastic Liouville equation.

On the other hand, within the framework of non-equilibrium thermo field dynamics
(NETFD) [17-21], a unified canonical operator formalism of quantum stochastic differential
equations was constructed [22—32] on the basis of the stochastic Liouville equation. The
guantum stochastic differential equations include the quantum Langevin equation and the
guantum stochastic Liouville equation together with the corresponding quantum master
equation. Within NETFD, introducing two kinds of operatomsith tilde and without
tilde, the entanglements between relevant operators and a density operator in the stochastic
Liouville equation can be disentangled. Therefore, one can extract the explicit form of the
time-evolution generator satisfying the stochastic Liouville equation, which enables us to
construct a unified canonical operator formalism.

In this paper, we will construct quantum Wiener processes by means of
boson annihilation and creation operators with their representation space extending
mathematicians’ procedure and implanting it into NETFD (section 2). The thermal degree of
freedom in the quantum Wiener processes will be introducedBrgaliubov transformation
in the thermal space which is a representation space within NETFD. On the basis of the
guantum Wiener processes, we will establish a quantum stochastic calculus (section 3).
Requiring the unitarity of the time evolution of the stochastic wavefunction, we will
construct a stochastic Sétinger equation (section 4). Then, starting from the stochastic
Schibdinger equation, we will show how one can obtain the time-evolution generator
satisfying a stochastic Liouville equation with the help of the fact that a density operator
is a functional of wavefunctions together with the principle of correspondence between
guantities in the thermal space and in the Hilbert space (section 5). We will also show how
one can construct a unified canonical operator formalism of quantum stochastic differential
equations on the basis of the time-evolution generator (section 5).

2. Quantum Wiener processes

We will construct quantum Wiener processes at zero temperature according to Hudson and
Parthasarathy [5, 9, 10].
2.1. Fock Space

We introduce boson operatorgt) and bi(¢) with ¢ € [0, co) satisfying the canonical
commutation relations

[b@), b'O] =8¢ —s)  [b@), b(s)] =0 (1)
and define the vacuum8)) and ((0| by
b»I0)) =0 (0’ =0. @)
We introduce ket- and bra-vectors defined by
1 1
t1, .o ) = ﬁb*(n) ...b1(i,)]0)) ((t1, .. tal = <<Olﬁb(t1) .. b(ty) (3)



Quantum stochastic differential equations 7575

which satisfy the orthonormalization condition
1
(1o talsa s $n)) = Sum— ) 8(t = s1) ... 8(t, = 5,) 4
n: P

and the completeness relation

Z(]_[/ dt1>|t1,...,t,,))((t1,...,t,1|:I. (5)
;Y0

n=0

Here, )", indicates the summation over all possible permutations:of.., 7, with

s1,...,s, fixed. Therefore, the set of ket-vectofB,...,,))} and that of bra-vectors
{{{t1, ..., t,|} form complete orthonormal systems. The vector spatespanned by the
complete orthonormal basic vectdrs, ..., t,)) and{({t1, ..., t,| is called theFock spacé.

2.2. Quantum Wiener processes
Let us define the operato and B,T on the Fock spacg® by
t t
B, = / ds b(s) B = / ds b (s). (6)
0 0
Taking expectations oB;, B,T and the produch By, B,BI with respect to the vacuums
|0)) and ((0], we find that
((01B,10)) = ((01B/|0)) =0 (7)
((OIB/B,|0) =0 ((0B,B]|0)) = min(z, s) ®)

where we used (2) and (1). Since the moments (7) and (8) indicate that the op8yaancs
Bf on the Fock spac&® can be interpreted as the Wiener process for a quantum system,
we call the operators the quantum Wiener processes

2.3. Product rules

Let us introduce thexponential vectorse( 1)), ((e(f)| € T'° by
le(f)) = eXp[/o dtf(t)bT(t)}IOH {(e(H1I = ({0l exp[/o dr f*(t)b(t)} (9)

where f is an element of the sét* of square integrable functions satisfyij@o dr | f()? <

oo. Since the set$le(f)))|f € L?} and{({e(f)||f € L?} of all exponential vectors are
linearly independenaind total in the Fock spacé&® [10], any operator on the Fock space

is characterized by the action on the exponential vectors [5]. The annihilation and creation
operatorsh(¢) andb’(r) are characterized by the relations

b®)le())) = f®)le(f))) ({e(NIB' (1) = ((e(H)If*@) (10)
respectively.
1 Since annihilation and creation operatérs) andb ! (r) satisfy bosonic canonical commutation relations (1), the

vector spacd™® is also called thdoson Fock spacer the symmetric Fock spadd0].
i The processes; and Bf are also called annihilation and creation processes, respectively [9, 10].
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With the help of the properties (10), the incremenss & B, .4 — B, dB,T = BLdt — Bf

of the quantum Wiener processe,sandB,T defined by (6) are characterized by the following
relations:

{({e(H)IdB:le(f))) = f'(®) dt{{e(f)le(f))) (11)
((e(HIB]le(f ) = f*(1) dr({e(f)le(f))). (12)
The products of the increment$d dB, and d are characterized by the following relatigns
({e(f)1dB, dB,le(f"))) = O(dr?) (13)
((e()IdB, dB]le(f)) = dt{(e(f)le(f) + O(dr?) etc (14)

Taking into account the terms @ (dr) in L2-space and neglecting the termscatir),
we have, from the matrix elements (11)—(14), the following product rules [5]:

| dB, dB/ dr
dB,| 0 & O (15)
dB/| 0 0 0
& | 0 0 0

2.4. Thermal space

We introduce theilde operators(b(r), b'(r)) on the spacd™® which is atilde conjugate
spaceof I'° associated withb(r), b'(r)). Here, thetilde conjugation is defined by the
following rules.

(1) For arbitrary operatord;, A, and A, complexc-numbersc; andcy, we have

(A1A2) = A14; (16)
(c1A1+ c2A2) = cf AL + 3 Az 17)
(Ay= A (18)
(ATy = A, (19)

(2) The tilde and non-tilde operators in the Satinger representation are mutually
commutative:

[A, B] =0. (20)
Let the vacuums if™® be denoted by0)) and ((0] which are defined by
b(1)|0)) =0 (016" (r) = 0. (21)

The tilde conjugate spaci® is the Fock space spanned by the basic vectors which are
introduced by cyclic operations &f (1) on the vacuunj0)) andb(z) on the vacuunm(0].
Now, we consider a tensor product space

r=r°gre. (22)
1 O(x) indicates that

tim 2% _ o 20

x—>0 X

while o(x) indicates that

. olx
lim —) =
x—>0 X

0.
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The vacuum statef®) and (0] of I" are defined by

b)) =b®»I0) =0 (Olp'(1) = (Olb' (1) = 0 (23)
where we have used the notational conventions such as

b(t) ® I = b(1) by T = bi(r) (24)

1 ®b(t) = b(t) 1®b'(1) = b (1) (25)

where I and ] stand for identity operators ofi® and I'°, respectively. In the following,
we will use the conventions. The vacuum® and (0| can be written as

10) = |0)) ® |0)) (0] = ({0 ® ((O]. (26)
I is the Fock space spanned by the basic vectors which are introduced by cyclic operations
of (b'(1), b'(1)) on the vacuumoO) and (b(1). b(r)) on the vacuum(O|. The annihilation
and creation operatotis(t), b'(¢), b(t) andbi(¢) on I' satisfy the canonical commutation
relations

[b(1), b ()] = [b(t), b (s)] = 8(t —5) (27)

[b(1), b(s)] = [b(1), b(s)] = [b(2), b(s)] = [b(), b (s)] = 0. (28)

The thermal degree of freedom can be introducedbygoliubov transformatiomn I'.
First, we require that the expectation valuebdfr)b(s) should be

(b'(1)b(s)) = 8 (t — 5) (29)

with a real positive numbet, where(- - -) indicates the expectation with respecthermal
ket-vacuun) andthermal bra-vacuuni|. We find that in order to ensure equation (29), it
is sufficient to impose théhermal state conditionsn the state$) and(|:

b(1)]) = %5* O (bT@) = (b (30)

In fact, using the conditions (30), we have

(b1 (0)b(s)) = ﬁ{w* (b(s)) + 8(t — )} (31)

which leads to (29).
We introduce annihilation operatofs(t), ¢(¢)) and creation operato@*(z), ¢*(¢)) for
the thermal ket-vacuurf} satisfying

c®))=¢n)))=0 (Icf@) = (le@) =0 (32)
and the canonical commutation relations

[e(t), c*(s)] = [E(t), E*(s)] = 8(t — 5) (33)

[c(t), c(s)] = [E(1), E(s)] = [c(t), E(s)] = [c(¥), E°(s)] = O (34)

[c'(1), ()] = [¢"(1), ()] = [c'(0). E(9)] = [c" (1), ()] = 0. (35)

Recalling the thermal state conditions (30), we see that such opetators:*(r)) and their
tilde conjugates are related b(z), b'(¢)) and their tilde conjugates through tBegoliubov
transformation[19]

ct)y \ _(1+n —n\ [ b
(5%))‘( -1 1)(5*(;))' (36)

The Bogoliubov transformation is the canonical one such that the canonical commutation
relations do not change under this transformation.



7578 T Saito and T Arimitsu

LetI'# denote the boson Fock space spanned by the basic ket- and bra-vectors introduced
by cyclic operations ofc*(¢), ¢*(t)) on the thermal ket-vacuum and of (c(¢), é(¢)) on the
thermal bra-vacuumn|.

The Bogoliubov transformation (36) is generated by

Ug = exp[ —7 /oo dr bT(I)ET(t):| exp[/Oc dtb(t)l;(t):| (37)
0 0
Ugt = exp[ — [ h dr b(t)l;(t)] exp[fz / h dr b*(z)é*(r)} (38)
0 0
as
c(t) = Ug'h(r)Us &) = Ugth' (1) Us. (39)

Equations (39) together with the properties (23) and (32) give formally the relations between
the thermal vacuums i and the vacuums it as follows:

) = Us*l0) (| = (0|Ug. (40)

Using the well known formula of the Lie algebra of the SU(1, 1) group, we can rewrite
Ug' as a normal ordered product

Ug' = exp[liﬁ /Ooo dt bT(t)l;T(t)i|
x exp[ —In(1+ n) /OO de (bt ()b (1) + BT ()b(t) + 5(0)}]
0

X exp[ — ﬁln /0 ” dr b(t)B(t)]. (41)

Here,§(0) is the delta functiors(¢) with r = 0. Equations (40) and (41) together with the
property (23) give

1) =exp|:—8(0)|n(l+fz)/oodt:| exp[ﬁ_ /wdtbf(t)ET(t)}w). (42)
0 1+n 0

Since$(0) = oo, equation (42) shows that any expansion coefficients of the thermal ket-
vacuum|) expanded by the complete orthonormal basiE wanish. Namely, in the thermal
ket-vacuum|), an infinite number of théhermal pairs which are particle pairs created by
the operators!(r)b!(r), are condensed and the Fock sp&éeis inequivalentto the Fock
spacel’ in the sense that any vector It cannot be written as a superposition of vectors
in " andvice versa

On the other hand, equation (40) together with the expression (37} afives

(| = (0| exp[ -7 /Oc dt bT(t)l;T(t)i| exp[ /oo dt b(:)B(r)}
0 0

= (0| exp|: / ” dr b(t)E(t)] (43)
0

where we have used property (23). We see that equation (43) is consistent with the thermal
state condition (30) of the bra-vacuum. In fact, using equation (43) and property (23), we
can prove the thermal state condition (30).
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2.5. Quantum Wiener processes at finite temperatures

Quantum Wiener processes at finite temperatures are defined by the operators
t t
B, = f ds b(s) B = / ds b(s) (44)
0 0

and their tilde conjugates represented in the Fock spéceThe explicit representations of

the processes;, B,T, B, and E’,T in T'# are given in terms of the Bogoliubov transformation
(36) by

B, = / ds[c(s) + nc'(s)] = C, + ﬁé’f’ (45)
0

Bl = / ds[é(s) + 1+ n)c(s)] = C, + A+ n)C; (46)
0

and their tilde conjugates, wher€,, C;, C, and C;* are the annihilation and creation
processes im# defined by

C = f ds c(s) C/ = / ds c*(s) (47)
0 0

and their tilde conjugates.

Any operator in the Fock spad@® can be characterized by the exponential vectors
le(f, g)), (e(f, g)| in T with f, ¢ € L? defined by

le(f, 8)) = exp[ /O dr{ f(t)c*(t) + g*(s)é*(s)}} 1) (48)

{e(f. 1=l eXp[/o dr{ f*(0)c(?) +g(s)5(s)}] (49)
which satisfy the following relations:

c)le(f. 8) = f®)le(f. 8) (e(f, )lc (1) = (e(f, I f*(0) (50)

c)le(f. ) =g ®le(f. g)) (e(f, I (1) = (e(f, &)Ig(D). (51)

As in the case of the construction of annihilation and creation procQ&er ) on I‘f’,
an evaluation of matrix elements of the products among the increméntsld;, dC,, dC;
and d, with the help of properties (50) and (51), gives the following product rules:

dc, dc; dC, dC; dr
dc,] 0 & 0 0 O©
dc;/ o 0 0 0 O
dc, ] o 0 0 d¢ O (52)
d¢;| 0 0 0 0 O©
d | 0 0 0 0 0

By making use of the expressions (45), (,46) and their tilde conjugates, and the product
rules (52), we can evaluate the produc® dB, as
dB, dB] =[dC, + 7 dC[dC, + (7 + 1) dC}]
= dC, dC; + (i + 1) dC, dC/ + i dC; dC, + (i + 1) dC; dC;
= (1 +1)dr. (53)



7580 T Saito and T Arimitsu

Similarly, we can evaluate the other products of the increments?gfchf, dB;, d1§,T and
dr and obtain the product rules summarized as follows.

dB, dB/ dB, dB] o

dB, | 0 (@A+n)dt nad 0 0
dB, | iidr 0 0 (@+a)d O (54)

dB, | de 0 0 (A+md 0

dBf | 0 (@A+a)d ade 0 0

dr | 0 0 0 0 0

Using equations (45), (46) and their tilde conjugates, the commutation relation (33) and
the properties (32) of the thermal vacuums, we obtain the moments of the increndgnts d
dB/, dB, and d3/ with respect to the thermal vacuurf)sand (| as follows:

(dB,) = (dBf) = (dB,) = (dB]) =0 (55)
(dB! dB,) = (dB] dB,) = (dB, dB,) = (dB, dB,) = i8(t — 5) dr ds (56)
(dB, dB!) = (dB, dBl) = (dB, dB!) = (dB/ dB!) = (1 + 2)8(r — 5) dr ds (57)
(otherg = 0. (58)
Letting 2 in (56) and (57) be the Planck distribution given by

) 1

= Go1 (59)

with some positive humben and the inverse of the temperatyge= 1/ T, we see that the

guantum Wiener processds and B,T are essentially equivalent to those introduced in the
problem of quantum optics [3].

3. Quantum stochastic calculus

On the basis of the quantum Wiener processes at finite temperatures, we will investigate
the quantum stochastic calculus.

3.1. Adapted processes
The Fock spac&”’ is decomposed as

r‘=rfer, (60)
in which, for f, g € L?,
le(f. 8) = le(fi, &) ® le(fu, &u)) (e(f, &) = (e(f1. 8| ® (e(fir, &)l (61)
where we set

Jn=fxn Jo = fxa (62)
and

D =11 ®l¢) (1=l ® (¢l (63)
Here, x; and x are defined by

Xx1(s) =0(t —s) Xe(s) =0(s —1) forz,s > Q. (64)
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Note thatI] is the boson Fock space built on the vacuugisand (|, while I'Y; is the

boson Fock space built on the vacuuip$ and (|. The quantum Wiener processBs,
Bf, B, and B/ are operators on the spat§.

Let us consider a space of tensor prodhgt® I'¥, whereH indicates a certain vector
space. For the sake of notational convenience, we identify the quantum Wiener processes
B,, B/, B, and B/ with the operators oft{s ® T'?, i.e.

Is®B,®I) =B, Is® (B ®l,) = B (65)
Is®B,®l)=B  Is® B/ @)= B (66)
B

where/s and / are the identity operators dis andI",, respectively.
An adapted proces$; is defined by

F=F®I (67)
whereF? is an operator ofh{5®l‘fj. According to the notation (65) and (66), the increments
dB,, dBf, dB, and &/ on T, are identified with the operators diis ® I'*, i.e.

Is® (Ig ®dB, ® I1a) = dB; Is ® (11 ® dB) ® Iy 14) = dB] (68)

Is® (g ®dB, ® lyra) = dB, I ® (In ® B ® Iyar) = dB]  (69)

wherel;; and/q are the identity operators d?ﬁ and Fft +dr» respectively. Therefore, for

an adapted proceds, we have
[F,,dB,] = [F,,dB/] = [F,,dB,] = [F,,dB)] = 0. (70)

Note that from (65) and (66) the quantum Wiener proce&eB,T , B, and 1§,T are adapted.

3.2. Quantum stochastic integrals

Let us consider a case wheke and B denote, respectively, an arbitrary adapted process

onHs ® I'? and one of the quantum Wiener procesge,st, B, and Bf.
Remember that quantum stochastic integrals of Ito type are defined by

T 1-1
/ X, dBY = lim Y X, (B — BY) (71)
0 i=0
and
T _ 1-1 _ _
f dB? X, = lim Z(B,# _— BHx, (72)
0 . i+ 1

i=0
while those of the Stratonovich type are defined by
T 1-1
= . X+ X, - _
# __ 14 14 # #
/0 X, o dB¥ = lim ?:0 “T(B[M — B)) (73)

and

T -1
_ : - ., X, + Xy
# — # #y i li
fo dB] o X, =lim ,-E=o(BIM - Bt[)HT_ (74)
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We have introduced the following differential notations

X, dB} = X,(Bf\y — B) (75)

dB'X, = (B}.q — BHX, (76)

X, 0 dBY = w@,ﬂw _ B (77)
and

dBfo X, = (B,y B,#)w. (78)
Here,t; = i At and the symbol lim indicates taking the limit

At — 40 I — +o0 (79)

keepingT = I At fixed. We call (75) and (76) the products of Ito type, whereas we refer to
(77) and (78) as the products of Stratonovich type. Note that quantum stochastic integrals
both of Ito and of Stratonovich types are adapted processes.

Property (70) gives us

[X,,dBf] =0 (80)

in the stochastic calculus of Ito type. Therefore, we have
T T
/ X, dB? = / dB* x,. (81)
0 0

In addition, using property (63) of the thermal vacuums and the property

(|Bfy=0 (82)
of the quantum Wiener processes, we see that

(|dBYX,1) = (X dBfl) = (11X:11){|dB]]¢) = O. (83)

This indicates that there is no correlation betweégrand dB?.

It should be pointed out that the incremerﬁf‘ddoes not commute witlX, .4, whereas
it does withX,. Therefore, in the stochastic calculus of Stratonovich type, the commutation
relation of X, and dB? defined by

[X,?dét#]EX,odl_?t#—dB?t#oX[ (84)
is not equal to zero, i.e.

[X,5dB"] #0. (85)
Therefore, in this case we have

T T
f X, o dB¥ ;é/ dB? o X,. (86)
0 0

Furthermore, in contrast with the case of Ito type,

(X, 0dBf)£0  (|dBf o X,|) # 0. (87)

SubstitutionX,.q, = X, + dX, into (77) and (78) gives us the relations between the
products of Ito and Stratonovich types in the form

X, odBf = X, dB} + } dX, dB} (88)
and
dBf o X, = dB}'X, + 1 dB dX,. (89)
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3.3. Quantum Ito’s formula

Let us consider an operato¥, representing an adapted proceds, dB] = 0;
T
Nr = / (F,dB, + G, dB] + J,dB, + K, dB] + H, dr) (90)
0

whereF,, G,, H,, J, and K, are adapted processes. Its differential notation is given by
dN, = F,dB, + G, dB/ + J,dB, + K, dB/ + H, dr. (91)

It should be noted that the incremen¥,ddoes not commute with an arbitrary adapted
processX, in general, i.e.

[X:, dN;] #0 (92)

because ¥, includes not only the incrementsBd dB,T, dB, and d?f but also the adapted
processe¢;, G,, J;, K, and H,. Furthermore, for the adapted procé§sand the increment
dn,, the property, such as (83), does not hold because of the Agdnt, i.e.

(IX,dN|) = (IX,H,|) dr #0 (IdN, X:|) = (|H,X,]) dr # 0. (93)
Let N/ be another stochastic integral defined by
T
Ny = / (F/dB, + G, dB! + J/ dB, + K/ dB] + H/ dr) (94)
0
with adapted processd¥, G;, H/, J; and K/, of which the differential notation is given
by
dN/ = F/dB, + G, dB} + J/ dB, + K/ dB] + H dr. (95)
The productV, g N/ 4,
Niya Nl g = (N +dN,)(N] + dN)) = N;N; + N, dN; + dN,N; + dN, dN; (96)

where dv; and dV, are given by (91) and (95), respectively. In contrast with the ordinary
calculus, the last term dN; of (96) is not the order oé(ds). In fact, using property (70)
and the product rules (54), we obtain

dN, dN, = [(1+ 7A)(F,G, + G,K, + J,K| + K,G)) + i(F,J| + G,F/ + J,F, + K,J))] dt.
(97)
With the help of expressions (91) and (95) together with (97), we find that (96) gives
d(N,N/) = (N,F/ + F,N)dB, + (N,G, + G,N!)dB/
+(N,J + J,N})dB, + (N,K] + K,N)) dB]
+[N.H/ + H,N/ + 1+ n)(F,G, + G,K] + J,K; + K,G})

is calculated as

+n(FJ!+ G, F/ + J,F + K,J))]dr. (98)
As we saw in deriving (98)quantum Ito’s formula
d(N,;N;) = dN, - N/ + N, - dN/ + dN, dN; (99)

holds for stochastic integrals; and N/ defined by (90) and (94), respectively [5, 9, 10].
Making use of relations (88) and (89) between the Ito and the Stratonovich products,
we have

N, odN/ = N, dN, + 1 dN, dN/ (100)

t When H; = 0, dN, satisfies((0| X, dN,|0)) = ({0O|dN, X,|0)) = 0, although @, still does not commute witx,,
i.e. [X;,dN,] # 0. WhenH, =0, N, is called themartingale[7, 33].
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and

dN; o N/ = dN,N, + J dN, dN;,. (101)
Therefore, we find that quantum Ito’s formula (99) is expressed in terms of the Stratonovich
products as

d(N,N)) = dN, o N/ + N, o dN/ (102)

which is identical to the well known formula of ordinary differential calculus.

4. Stochastic Schédinger equation

In this section, we review the stochastic Sifinger equation investigated by Hudson and
Lindsay [7].

4.1. Ito type

We consider a boson system which is described by the operatiida’ on a Hilbert space
Hg satisfying the commutation relations

[a,a1 =1 [a,al =0 (103)

and which interacts with a reservoir at finite temperatures. Let us suppose that the effect of
the reservoir on the system is taken into account by the random force operators represented
by the quantum Wiener processes at finite temperatures constructed on the Fock space
I'?. We sometimes call the boson system the relevant system and the reservoir system the
irrelevant system.

The state of the system is described by the state vggtiar))) in the spacé-lg ®T#.
The state vectony,())) is assumed to evolve in time according to the 8dimger equation

diyrs (1)) = My, delyy () (104)

with an infinitesimal time-evolution generatbf, dr including random force operators. We
call equation (104) thetochastic Scludinger equation
The formal solution of (104) is written by

[y (0))) = Vi) Y5 (0))) (105)
where V,(t) is the stochastic time-evolution generator satisfying the equation

dV(t) = —iHys, dt Ve (2) (106)
with V,(0) = 1. Note that the bra-vectdfy,(¢)| is defined by

(P (D] = (P OV 1) (107)

where V_;l(t) is the inverse ofV, ().
For a bi-linear and phase invariant boson system with the interaction

iv2(a' dB, — adB)
H;, dt has the form
Hy, dr = Zd +iv2c(a' dB, — adB)) (108)

with the relevant system operatdre +2. dB, and B, are the increments of the quantum
Wiener processes at finite temperatures amla positivec-number. Note that we adopt the
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same notation foB;, Bf and their tilde conjugates,, BJ as (65) and (66). Furthermore,
we use the following notation for the relevant system operators

ZQRIr=Z a®lgp = a etc (109)

Note that since equation (106) with the infinitesimal time-evolution generator (108) is
the quantum stochastic differential equation of Ito type, the time-evolution genédfator
is the quantum stochastic integral of Ito type which is an adapted process.

We require that the time-evolution generaigi(z) should be unitary, i.e.

ViV = ViV =1 (110)
Therefore, we have the algebraic identities

AV (V0] = dv)@) - Vi) + V@) - dVe) + dV () dve) =0 (111)
and

dlVr(OV] (O] = V(1) - V](@©) + Ve (0) - dV](@) +dVp () dV]() =0 (112)

where we have made use of the calculus rule of Ito type (quantum Ito’s formula). The
identities (111) and (112) with equation (106) and its Hermitian conjugate give the following
relation,

i(Z' — Z) + 2 [(i + Da'a + iaa' ] = 0 (113)
where use has been made of the product rules (54). Thus, we obtain
Hy, dr = Hgdr — ix[(1+ 2)a'a + naa'ldr +iv2c(a' dB, —adB) (114)

where we have putZ + Z')/2 = Hs. Note thatHy is Hermitian. In the following, we will
putz to the Planck distribution function (59).

Applying equation (106) ofVs(z) to the state vectopy,(0))), we have the stochastic
Schibdinger equation of Ito type

divy (D)) = —iHy, dt[y, (1)) (115)
with the infinitesimal time-evolution generator (114).

4.2. Stratonovich type

Using the relation (89) between the Ito and the Stratonovich products, we transform the
stochastic differential equation (106) of Ito type into that of Stratonovich type as

de(l) = — iny, dZ‘Vf(t)
= —i{Hy, dt o Vp(t) — 3Hy, de dVy (1)}
= —iH;, dto V(1) (116)

where we have substituted (106) into the right-hand side of the second equality. Here, we
have defined the infinitesimal time-evolution generdiy of Stratonovich type by

Hy, dr =My, de +i3Hy, dtHy, dr. (117)

With the help of the product rules (54), we obtain the Hermitian stochastic infinitesimal
time-evolution generatoH,, dr as

Hy, dr = Hgdr +iv/2c(a" dB, — adB)). (118)
The Hermiticy of Hy, dr guarantees the unitarity df;(z).



7586 T Saito and T Arimitsu

Applying equation (116) oV, (¢) to the state vectory,(0))), we obtain the stochastic
Schibdinger equation of Stratonovich type

diyry (1)) = —iHy, df o [Yrr(1))) (119)
with the infinitesimal time-evolution generator (118).

5. Stochastic time-evolution in thermal space

On the basis of the stochastic Satinger equation, investigated in the previous section,
we will construct a stochastic Liouville equation in thermal space and obtain the explicit
form of the time-evolution generator satisfying the stochastic Liouville equation within
the framework of NETFD. Using the time-evolution generator, we will construct a unified
canonical operator formalism of quantum stochastic differential equations.

5.1. Thermal vacuums
Let us define the density operator(s) corresponding to the state vectgr,(¢))) by

pr (1) = [ (DN (P (O] (120)

Using (105) and (107) with the unitary time-evolution generafpf), we see that (120)
becomes

pr(6) = VO ON (W OIV](1) = Vi) pr OV (). (121)
The density operatop,(¢) satisfies

triotpr (1) = 1 (122)
where the trace operationgtris defined by

thot = tr @ trg (123)

with the trace operations tr of the relevant system apatrthe reservoir. The expectation
value of any observabld is given by tfiApy (7).

With the help of the principle of correspondence (see the appendix), the density operator
ps(t) defined by (121) is expressed as a thermal ket-vacuum, i.e.

107(1)) = oy (1)) = Vi (1)[07(0)) (124)
where we have defined the stochastic time-evolution generator by
V(1) = Vi) Vs (o). (125)

Note that, sinceV;(0) = 1, we haver(O) = 1. The vector space to which the thermal
vacuum|O, (7)) belongs is assumed to Bés ® I'¥ whereH; is the tensor product space

of relevant systen{% and its tilde conjugate spade?, i.e. Hs = H3 ® 19, andT” is the

Fock space of the quantum Wiener processes at finite temperatures constructed in section 2.
The operatoﬂ7f () defined by (125) is that on the spakg ® ' and turns out to be unitary

from the relation

f/f* t) = vfT OV6) =V oV e =V (126)

where use has been made of the unitaritypfr).
Equation (122) requires that

(LotlOr (1)) = 1 (127)
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where the thermal bra-vacuuttyy| is defined by
(Liotl = ({1 (128)

with the thermal bra-vacuuntl| in the spaceH of the relevant system and the thermal
bra-vacuum| in the spacd™ of the irrelevant system. The expectation valugAp; (7) is
expressed as the expectation with respect to the thermal ket-vguum and the thermal
bra-vacuum{ly], i.e.

trotApy (1) = (Lot A|Of (2)). (129)
Note that, for any relevant system operatgrwe have
(11AT = (1A (130)

which is the basic property of thermal space [19-21]. Furthermore, for the random force
operators &, and dB;, we have

(IdB/ = (|dB, (131)
which follows from (30).
The equation (127) together with (124) yields

(Liotl V7 (1)10; (0)) = 1. (132)

Since equation (132) should hold for any timend for any initial thermal vacuun®, (0)),
we have

(Lot Vi (1) = (Liotl V£ (0) = (Lyot] (133)
where we have used the fact that(0) = 1.

5.2. Stochastic Liouville equation

5.2.1. Ito type. Using the calculus rule of Ito type, we have from (125)

dV, (1) = dVi (1) - Vi) + V(o) - dVi(r) + dVe(0) dVi (). (134)
Substituting (106) and its tilde conjugate

dV, (1) = iHy, de Vi (r) (135)
into (134), we have

dV (1) = —iFs, de V(1) (136)
where

Hyodr = My, dt — Hy, dr +iHy, drHy, dr. (137)
With the help of (114) and the product rules (5%&);, dtﬂf,, dr is calculated as

Hy, drHy, dr = 2c[ (72 4 Daa + aa‘a’ dr. (138)
Putting (114) and (138) into (137), we obtain

H;, dr = Hy dr +i(T1g + fp) dr + dM, (139)
where

Hs = Hg — Hy (140)

[Mgr = —«[(a" — a)(ua + va") + 1C] (141)

fp =2« +v)(@' —a)@" —a) (142)
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and
dM, = i{[(a" — @) dW, + 7c] — [(ua + va®) dW," + 7]} (143)

with real numbers: andv satisfyingu + v = 1. Here, TC indicates the tilde conjugate
of the previous termIlg andIlp represent relaxation and diffusion term respectively The
operators &, and dv," are defined by

W, = v/2c(udB, +vdB]) dW' = v/2«(dB — dB,). (144)
Making use of relations (130) and (131), we see that (139) satisfies
(Liotl Hy, dt = (|(LIH;, dt = O (145)

which is consistent with relation (133) and assures the conservation of probability (127).
Note that

(1H;, dt #£0 (146)

which indicates that the conservation of probability does not hold within only the space of
states of the relevant system, i.e.

(10 (1)) # 1. (247)
Similarly, from the definition
viey =viovio (148)
we obtain
dvi() =iV (A, d (149)
with
M, dt = Hsdr —i(fTg + [1p) dr + dM,. (150)

Note thatH ,dr is not the Hermitian conjugate dif, dr.
We see that equations (136) with (139) and (149) with (150) satisfy

d‘?f @) - Vf(t) + ‘A/_,T(t) . de(t) + d\7f (1) de(t) =0 (151)
and
dVy(0) - Vi) + Vi) - dV] (o) + dVp () dV] (1) = 0 (152)

which are consistent with the unitarity O}(t).

Since Vf~(t) and \7;(;) are subject to the stochastic differential equations (136) with
(139) and (149) with (150) of Ito type, respectively, they are quantum stochastic processes
consisting of quantum stochastic integrals of Ito type. Theref@m) and ‘7; (t) are
adapted processes.

Applying equation (136) of/f(t) to the thermal vacuuri®,(0)), we obtain the quantum
stochastic Liouville equation of Ito type

d|0f (1)) = =Tz, dr|0f (1)) (153)

with the infinitesimal time-evolution generator (139).



Quantum stochastic differential equations 7589

5.2.2. Stratonovich type.Using the calculus rule of Stratonovich type, we have from (125)

dVy (1) = dVy (1) o Vi (1) + V(1) o dVs(2). (154)
Substituting (116) and its tilde conjugate

dVy(t) = iHp, dt o Vi () (155)
into (154), we obtain

dV, (1) = —iHy, dr o Vs (1) (156)
where

Hy, dt = Hy, dt — Hy, . (157)
Putting (118) into (157), we get

Hy, dt = Hgdr + dM, (158)

which is apparently Hermitian.
Similarly, from definition (148), we obtain the equation 6,?0) as

dvi() =iV} (t) o Hy, dr (159)

where use has been made of the hermiticyI-Al;]‘, dz. Note that (159) is the Hermitian
conjugate of equation (156).
Equations (156) and (159) with (158) satisfy the following equations,

AV (6) o Ve(r) + V(1) 0 V(1) = 0 (160)
V() o V(1) + Vi (1) 0 dV/ (1) = O (161)
which show the unitarity 01\7f(t).
With the help of properties (130) and (131), we see that expression (158) satisfies
(Liotl Hy,, dt = (|(1| Ay, df =0 (162)

which is consistent with (133).

The time-evolution equation (136) of Ito type with (39) is connected to equation (156)
of Stratonovich type with (158) by the relation (89) between the Ito and the Stratonovich
products. In the same way, equation (149) of Ito type with (150) is connected to equation
(159) of Stratonovich type with (158) through the relation (88).

Applying equation (156) of/f(t) to the thermal vacuuni0,(0)), we have the quantum
stochastic Liouville equation of Stratonovich type

d|0f (1)) = —iHy, dt o |0;(2)) (163)

with the infinitesimal time-evolution generator (158).

5.3. Quantum master equation

Applying the stochastic Liouville equation (153) of Ito type with the infinitesimal time-
evolution generator (139) to the random force bra-vacuylyme have

d(|0f (1)) = —i(|FLs, dt]0f (1))
= —i[{Hs +i(TTr + [1p)} dr (|0 () + (|dM;|0s(1))]. (164)
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Under the assumptign

107(0)) = 10s)1) (165)
with the thermal vacuunOs) of the relevant system at= 0, (|dM,|Q,~(t)) can be evaluated
as

(/dM; 07 (1)) = (|dM, V;(1)])]0s) = O (166)
where we have used the definition (124) of the thermal vacir)) and the property

(83) of the products of Ito type. Therefore, puttif@z)) = (|0s(¢)), we finally obtain the
guantum master equation for the bi-linear and phase invariant system as

210y = ~iA100) (167)
where the infinitesimal time-evolution generat@ris given by
H = Hg +ill (168)
with
I = Tg + [1p
= —«[(1+ 27)(a'a + a'a) — 21 + n)aa — 2ra’a’] — 2«n (169)

which is identical to that obtained within the framework of NETFD [17-21]. Note that
we can also derive the quantum master equation (167) by applying the stochastic Liouville
equation (163) of Stratonovich type with the infinitesimal time-evolution generator (158) to
the random force bra-vacuufh[19, 22].

Recalling equation (124) and taking (165) into account, we find that

10()) = (| V;(1)])|0s). (170)

On the other hand, the time-evolution generaf’c[r) of the thermal ket-vacuun®(z)) is
defined by

10(1)) = V (1)[0(0)). (171)
Provided thaf0(0)) = |0s), equations (170) and (171) yield
V() = (Vr0)). (172)

5.4. Quantum Langevin equation

5.4.1. Operators in the Heisenberg representatioSince Vf(t) is unitary, we have

ViV o = viovin =1 (173)

From equation (173), we see with the help of property (133) that
(Liotl V} (1) = (Lot (174)
The expectation value of any observalllewith respect to the stat®;(z)) is given by
(Liotl A10f (1)) = (Liotl AV (1)]07(0)) = (Liotl V(1) AV ()]0 (0)) (175)

where we have used equation (124) and property (174). If we define the operator in the
Heisenberg representation

A@) = V() AV, (1) (176)

T Equation (165) indicates tha6,(0)) is the tensor product of0s) and |), i.e. |07(0)) = |0s) ® |). In the
following, we omit the symbolp.
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we consider (175) to be the expectation valuelof) with respect to the initial stat@®, (0)).
Note that, asf/f(t) and ‘7; (1) are adapted processes, the operatan defined by (176) is
also an adapted process. Therefore, the following commutation relation holds
[A(), dB,] = [A(), B[] = [A(), dB]] = [A(r),dB]] =0 (177)
for quantum Wiener processés, Bf and their tilde conjugates;, B,T, which comes from
(80).
Any operators in the Heisenberg representation defined by (176) keep the equal-time
commutation relations, such as

[a@®),a'®]=1  [am,a'®)] =1 (178)
Note that, using the properties (130) and (174), we haveAfoy defined by (176)
(Lot AT(1) = (Lot A1), (179)

5.4.2. Ito type. Using the calculus rule of Ito type, we have the algebraic identity for the
operatorA(t) defined by (176)
dA(t) = dV () AV, (1) + VIO AdVr (1) + dV/ () AdV, (). (180)

Substituting equations (136) with (139) and (149) with (150) into (180), we obtain the
guantum Langevin equation of Ito type:

dA(r) = i[Hs(1), AO]dr + «{[a’ (1) — a(), A®](ua(t) +va' ()
—(a'(t) — a@)pa(t) +va' (), A@1)]
+[a'(t) — a(), A®O(ra(t) + va' (1))
—(@'(t) — a()[pat) + va' (), A1} dt
+2 (it + v)[a' (1) — a(t), [a' () — a(t), A®)]]dt
—{la'@®) —a@), AO1AW, +[a' (1) — a(r), A()] dW,;}
Hpa(t) +va' (), AOVAW, + [pa) + va'(t), A@)]dW,}. (181)

5.4.3. Stratonovich type.Making use of the calculus rule of Stratonovich type, we have
the algebraic identity for the operatdn(r) defined by (176)

dA(t) = dV](t) o AVy (1) + V(1) A 0 AV (). (182)

With the help of equation (156) and its Hermitian conjugate (159) together with the identity
(182), we obtain the quantum Langevin equation of Stratonovich type. We see that the
guantum Langevin equation of Stratonovich type can be expressed as the Heisenberg
equation forA(z):

dA(t) = i[Hy(t) dt 3 A(0)] (183)
where we have defined
Ay (t)dt = V(1) o Ay, dt o Ve(0). (184)

The symbol {$] is the commutator defined by (84). Recalling (158), we have the explicit
form of equation (183) as

dA(1) = i[Hs(t), A(1)] dt
—{[a’(t) —a(t), A()] 0o dW (1) + [a'(t) — a(), A(1)] o AW (1)}
+H{[pa@) +va'(t), A@)] o dW(t)
+ua) +va' (1), A(] o dW* (1)} (185)
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where we defined the operator&/dr), dW*(r), dW (r), dW*(r) by

dw ) = 17_; (t) o dW, o Vs (1) (186)
dW*(r) = V] (6) o dW, 0 §;(r) (187)
dW (1) = V(1) o dW, o Vs (1) (188)
AW (1) = V(1) o dW,; 0 §;(1). (189)

Using the relations (88) and (89) between the products of Ito and Stratonovich types
and the product rules (54), we can expre¥s(d), dW*(1), dW (1), dW*(¢) in terms of d¥,,
dw/, dw,, dw/, respectively, as follows:

dW (1) = dW, — k[ua(r) + va' ()] dr (190)
dW(r) = dW," — k[a'(r) — a(r)] dt (191)
dW (1) = dW, — k[ua(r) + va' (1)) dt (192)
dWH(t) = dW," — k[a'(t) — a(r)] dr. (193)

Substituting (190)—(193) into (185), we see that the quantum Langevin equation (185) of
Stratonovich type becomes
dA(1) = i[ Hs (1), A(t)] dr

+icfla’ (1) — a), A (pa @) + va' (1))

—(a'(@®) — a@)lpa) +va' @), A@®)]

+a'@) —a@), A0 (ua) + va' @)

—@'@0) — a@)[pa) +va' @), A@)]} de

—{la'() —a(0), A@] o dW, +[a' (1) — a(1), A()] o dW,}

+{dW} o [ua(r) + va'(r), A()]

+dW, o [pa(t) + va'(t), A1)} (194)
Furthermore, with the help of the relations (88) and (89) between the products of Ito and

Stratonovich types and the product rules (54), we find that the equation of Stratonovich type
(194) is identical to equation (181) of Ito type.

5.5. The equation of motion of the expectation value

Let us assume that the initial vacuu@y (0)) = |0;) can be expressed by the product of
the vacuums of the relevant and the irrelevant systems as (165).
Applying the quantum Langevin equation (181) of Ito type to the bra-vac(iym, we

have
d(Liot| A(#) = (Lot [Hs(2), A(t)] dt

+ie((Lotda" (O[AQ@), a(D)] + (Lotl[a' (1), A@D)]a(@)) di

+ 2t (Ltla’ (1), [A(1), a(®)]] dt

Hal[A®). a' (O)dF, + (Lol[a(r), A(D)] dF; (195)
where we have used properties (131) and (179).

Putting the ket-vacuumOy) into (195), we obtain the equation of motion of the
expectation value of an arbitrary operatbrof the relevant system:

d :
a(1t0t|A(t)|of> = (Lot [Hs(2), A(D]IOf)
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+1 ((Liotla (D[ A(D), a()]10f) + (Letlla' (1), A()]a(1)]0f))
+2kcit (Lot [a’ (1), [A(t), a(®)]]10f). (196)

Here, we have used the property (83) of the Ito products.
Remembering (172) and the definition (176)A(f), we find with the assumption (165)
that

(Liotl A)107) = (I{LIV] (1) AV (1)]0s)[) = (1]A[0(1)) (197)

where we have used property (174) and the assumptiori@t@b = |0s). Taking account

of relation (197), we see that equation (196) of the expectation value is identical to the
equation derived from the master equation (167) with (168) and (169), which shows the
consistency of the framework.

6. Summary and discussion

In this paper, we constructed the quantum Wiener processes together with their
representation space by extending the work of mathematicians and by implanting it into
NETFD. Then, we constructed a unified system of quantum stochastic differential equations
on the basis of the stochastic Sgtinger equation which was studied by mathematicians.

The quantum Wiener processes were constructed by using boson operators with time
indices. When we adopted the Fock spatefor the representation space, in the same
way as Hudson and Parthasarathy, we obtained the quantum Wiener processes at zero
temperature. However, we obtained the quantum Wiener processes at finite temperatures by
extending the representation space to the Fock spaeehich is obtained by the Bogoliubov
transformation in the tensor product space= I'° ® I'°. This is the reconstruction of
guantum Wiener processes at finite temperatures introduced by Hudson and Lindsay [7, 8],
within the framework of NETFD. Within NETFD, the thermal degree of freedom was
introduced by the thermal state conditions or the Bogoliubov transformation, which is a
manifestation of unitary inequivalence between the thermal vacuums of zero and finite
temperatures. This notion of unitary inequivalence between the vacuums with different
temperatures is one of the remarkable features within NETFD or TFD. The quantum Wiener
processes and the quantum stochastic calculus given in this paper provide the foundation
for those used in quantum optics [3] and quantum stochastic differential equations within
NETFD [22-32].

We constructed the stochastic Satlinger equation with the quantum Wiener processes
at finite temperatures on the requirement that the time-evolution generator should be unitary.
Then, we introduced the density operator corresponding to the stochastic wavefunction.
By means of the principle of correspondence between quantities in thermal space and in
Hilbert space, we obtained the stochastic thermal ket-vacuum corresponding to the density
operator. The time-evolution equation (Satlinger equation) of the thermal ket-vacuum
gave the quantum stochastic Liouville equation. On the other hand, the Heisenberg equation
with the infinitesimal time-evolution generator of the quantum stochastic Liouville equation
gave the quantum Langevin equation. Using the quantum stochastic calculus constructed in
section 3, we constructed the quantum stochastic differential equations both of Ito and of
Stratonovich types.

Applying the stochastic Liouville equation of Ito type to the random force bra-vacuum
(|, we obtained the quantum master equation, which is identical to that derived in papers
[17-21]. Taking the expectation with respect to the thermal ket-vadOynand the thermal
bra-vacuum(l;y| of the quantum Langevin equation of Ito type, we obtained the equation
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of motion of the expectation value of an arbitrary relevant system operator. This equation of
motion is equivalent to that derived by the master equation, which shows the self-consistency
of the system.

Hudson and Lindsay constructed a unitary stochastic time evolution in the vector space
H% ® T, whereH? for the relevant system is a usual Hilbert space &fdfor random
force operators is a Fock space in thermal space, which was briefly reviewed in section 4.
The fact that the vector space for the relevant system is not a thermal space prevents the
system from introducing the quantum stochastic Liouville equation. In this paper, we gave
the quantum stochastic Liouville equation by adopting a thermal space for the space of
states of the relevant system as well as for the random force system.

The stochastic time evolution in thermal space constructed in this paper is unitary. On
the other hand, non-unitary stochastic time evolution was constructed within the framework
of NETFD [22-32]. In this way, it turned out that there exist two kinds of systems in
guantum stochastic differential equations within NETFD; one is the system of non-unitary
stochastic time evolution and the other is that of unitary stochastic time evolution. The
two systems are equivalent in the sense that they give the same equation of motion of
the expectation value of any observable. The relation between the two systems will be
investigated in a forthcoming paper.

Appendix. The principle of correspondence

The correspondence between vectors in the thermal space and operators in a Hilbert space
is given by the following rule [17,18, 34]:

ps(t) <— 10(1)) (198)
A1ps(1) Az <— AALJ0()). (199)

Here,ps(¢) is a density operator on the Hilbert space, whef@&3) is a thermal ket-vacuum
in the thermal spaced; and A, are arbitrary operators on the Hilbert space.

It was noticed first by Crawford [35] that the introduction of two kinds of operators for
each operator enables us to handle the Liouville equation as thédiutper equation.
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